External masses effect to Zbs coupling

Shan Cheng

Hunan University

In collaboration with Qin Qin, and Hsiang-nan Li

2018 年 6 月 22 日 @ SJTU, 中国物理学会高能物理分会第十届全国会员代表大会暨学术年会

Background

 $g_{Z\bar{b}s}$ Mass effect

Conclusion

Background

- $\dagger\,$ Inami-Lim function is widely used to deal with B meson decays
- [†] large m_t , the limit of vanishing external momentum, $B_0, C_0, D_0, E_0, D_0', E_0'$
- [†] In B meson decay, the invariant mass of boson is much less than m_t , the limit is good

- [†] But in *b* production, ie., BK production in Z factory (CEPC), we should revisit C_0
- \dagger At least the m_Z should considered, how well of the limit works

the first glance at $Z \rightarrow \bar{b}s$

•
$$g_{Z\bar{b}s} = \sum_{i} V_{is} V_{ib}^{*} \left[g_0 + m_i^2 / m_W^2 \left(g_1 + g_2 \ln \frac{m_i^2}{m_W^2} \right) + \cdots \right]$$

- Suppressed by the Glashow-Illiopoulous-Maini(GIM) mechani.
- do occur in electroweak interaction at one-loop penguin level
- Gauge condition: The t' Hooft-Feynman gauge ($\xi = 1$ in R_{ξ})
 - \dagger vector boson is proportional to $g_{\mu
 u}$, the simplest form
 - $\dagger\,$ the unphysical scalar boson has a pole at $p^2=M^2$
 - the negative-metric scalar-boson pole of the vector-boson propagator is cancelled by the unphysical-scalar-boson propagator
 - † the masses of unphysical scalars are took on their physical partner.
- Dimension regularization with the completely anticommunting γ_5 and the 't Hooft convention of γ_5

 $Z \rightarrow \bar{b}s$

FIG. 1. Feynman diagrams contributing to $Z^0 \rightarrow q\bar{x}$ in the 't Hooft-Feynman gauge. The internal quarks must have weak isospin different from q and x. Wavy internal lines represent W^{\pm} ; dashed internal lines represent the associated unphysical scalars.

looking at $Z \rightarrow \overline{bs}$

- no divergence appears in Fig1(d,e)
- Unitarity of the charged current mixing matrix, each divergence in Fig1(a,c,j,g) becomes finite
- divergences in Fig1(b,f,h,k) cancels for each internal flavour
- the couplings in Fig1(b,f,h,k) are proportional to $O(m_i^2/m_W^2)$, zero power ($\propto 1$) in Fig1(a,c,j,g)
- the sin θ_W dependence in individual diagram disppear finally
 - $\dagger \sin heta_W$ represents the coupling of photon to $ar{b} \gamma_\mu (1-\gamma_5) s$
 - $\dagger\,$ the related $\phi\bar{b}s$ vertex does not have this dependence

Effects of the external momentum

Taking Fig.1(b) for example, Preliminary

$$\begin{split} Z^{\mu}\bar{b}(k_{1})g_{Z\bar{b}s}^{(b)}s(k_{2}) &= Z^{\mu}\bar{b}\frac{g^{3}V_{t\bar{b}}V_{ts}}{4\,c_{\theta_{W}}}\frac{m_{t}^{2}}{m_{W}^{2}} \left\{ \left(\left[(2-\epsilon)C_{g_{\mu\nu}}(\bar{k}_{2}',-\bar{k}_{1}')+(m_{b}^{2}+m_{s}^{2})C_{pp}\right. \right. \right. \\ &\left. -(m_{Z}^{2}-m_{b}^{2})C_{p_{1}p_{2}}-2m_{s}^{2}C_{1} \right] \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) \right. \\ &\left. -\left[m_{t}^{2}C_{0}-m_{b}^{2}(C_{0}-C_{2})+m_{s}^{2}(C_{0}-C_{1}) \right] \left(1-\frac{4}{3}s_{\theta_{W}}^{2} \right) \right) \gamma_{\mu}L \\ &\left. +m_{b}m_{s} \left[2C_{2} \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) + (C_{1}-C_{2}) \left(1-\frac{4}{3}s_{\theta_{W}}^{2} \right) \right] \gamma_{\mu}R \\ &\left. -2m_{b}C_{pp} \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) k_{1,\mu}L \right. \\ &\left. -2m_{s} \left[C_{p_{1}p_{2}} \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) - C_{2} \left(1-\frac{4}{3}s_{\theta_{W}}^{2} \right) \right] k_{1,\mu}R \\ &\left. +2m_{b} \left[C_{p_{1}p_{2}} \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) + C_{1} \left(1-\frac{4}{3}s_{\theta_{W}}^{2} \right) \right] k_{2,\mu}L \right. \\ &\left. -2m_{s} \left[2C_{1} - C_{pp} \right] \left(-\frac{4}{3}s_{\theta_{W}}^{2} \right) k_{2,\mu}R \\ &\left. -\frac{\epsilon}{4}B_{0}(-p'_{s}-p'_{b}) \left(1-\frac{4}{3}s_{\theta_{W}}^{2} \right) \gamma_{\mu}L \right\} s \end{split}$$

Effects of the external momentum

• †
$$C_0$$
; $C_{\mu}(k_1, k_2) = k_{1\mu}C_1 + k_{2\mu}C_2$;
† $C_{\mu\nu}(k_1, k_2) = g_{\mu\nu}C_g + (k_{1\mu}k_{1\nu} + k_{2\mu}k_{2\nu})C_{kk} + (k_{1\mu}k_{2\nu} + k_{1\nu}k_{2\mu})C_{k_1k_2}$

• C_g , B_1 are the leading power of $\mathcal{O}(m_t^2)$

•
$$m_W = 80.4 \,\text{GeV}, \ m_t = 173 \,\text{GeV}$$

• Preliminary

- [†] Varying k_1^2 , k_2^2 does not change B_1 , C_g
- $\dagger \ \gamma_{\mu} R, \, k_{\mu}$ terms are four and five order of magnitude smaller
- \dagger The mass effect mainly come from the m_Z terms

Masses (GeV)	Figs. (a+c+g+j)	Figs. (b+f+h+k)	Figs. (d+e)	All Figs
$m_Z = 0, m_b = 0, m_s = 0$	1.14	1.71	0.56	3.40
$m_Z = 91.2, m_b = 4.2, m_s = 0.095$	0.78	1.67	0.61	3.07
$m_Z = 0, m_b = 4.2, m_s = 0.095$	1.14	1.71	0.56	3.40

Conclusion

湖南大学高能物理学科

- 理论物理硕士学位点(1985),物理学博士点; 张庆营,刘全慧,成立理论物理研究所,
- 年轻
- 强子物理(戴凌云,姚德良)
 味物理(愈洁晟,程山)
 QCD(蒋军)
 形式场论(刘全慧,龙江)

欢迎大家来长沙做主/做客!

The End, Thanks.