

Institute of High Energy Physics Chinese Academy of Sciences

Overview of the $J^{PC} = 1^{--}$ charmonium (-like) states decaying in $B\overline{B}$ (a) $B\overline{E}S$

Xiongfei Wang(王雄飞) (for BESIII collaboration) IHEP, CAS

June 20, 2018, Shanghai

中国物理学会高能物理分会第十届全国会员代表大会暨学术年

Outline

□ Introduction

DRecent results

Study of J/ψ , $\psi(3686) \rightarrow B\overline{B}$ (B:baryon)

- 1. $J/\psi, \psi(3686) \rightarrow \Xi^-\overline{\Xi}^+, \Sigma(1385)^+\overline{\Sigma}(1385)^\pm$
- 2. $J/\psi, \psi(3686) \rightarrow \Xi^0 \overline{\Xi}^0, \Sigma(1385)^0 \overline{\Sigma}(1385)^0$
- 3. $J/\psi, \psi(3686) \rightarrow \Lambda \overline{\Lambda}, \Sigma^0 \overline{\Sigma}^0$
- 4. $J/\psi, \psi(3686) \rightarrow N\overline{N}(p\overline{p}, n\overline{n})$
- 5. $\psi(3686) \rightarrow \Xi(1690/1820)\overline{\Xi}$

> Measurement of cross section of $e^+e^- \rightarrow B\overline{B}$

 $\begin{array}{l} 1. \ e^+e^- \rightarrow p\overline{p} \\ 2. \ e^+e^- \rightarrow \Lambda\overline{\Lambda} \\ 3. \ e^+e^- \rightarrow \Lambda_c\overline{\Lambda}_c \end{array}$

DSummary

Charmonium(-like) states

■ Nonrelativistic $c\bar{c}$ bound states, J/ψ (1³ S_1) is the first member with $J^{PC} = 1^{--}$, other *below charm threshold* like $\psi(2S)$, *etc.*. ■ Chamonium (-like) states *above charm threshold* like Y(4260), Y(4360), etc., proposed more exotic explanations as hybrids, tetraquark, ^{4,0} hadronic molecule, glueball, etc..

Potential models and L-QCD, very successful in describing spectra & onium properties!

Potential models:

Example from Barnes, Godfrey, Swanson:

$$V_0^{(c\bar{c})}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c \cdot \vec{S}_{\bar{c}}$$
(Coulomb + Confinement + Contact)

$$V_{\text{spin-dep}} = \frac{1}{m_c^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_s}{r^3} T \right]$$
(Spin-Orbit + Tensor)
PRD72, 054026 (2005)

Baryon spectroscopy/production

- Established baryons described by 3-quark configuration with the zero total color charge.
- **Production of** $B\overline{B}$ **in** e^+e^- **annihilation:**

4

Provide a favorable test of pQCD and baryonic properties

- ✓ Test "12%" rule: $Q_h = \frac{Br(\psi(2S) \to X_h)}{Br(J/\psi \to X_h)} = 12\%$ (QCD prediction).
- ✓ Test SU(3)-flavor symmetry

- Allowed for $\psi \to B_8 \overline{B}_8, B_{10}, \overline{B}_{10}$, forbidden for $\psi \to B_8 \overline{B}_{10}$.

- ✓ Angular distribution study $(\frac{dN}{d(\cos\theta)} \propto 1 + \alpha \cos^2\theta)$:
 - -- Quark mass effect, electromagnetic effect, etc.: $0 < \alpha < 1$.
- $\checkmark B\overline{B}$ threshold effect
 - -- $B\overline{B}$ bound states or unobserved meson resonances
- ✓ Electromagnetic form factor (EMFFs)
 - -- Further understand the strong interaction
 - -- Measure time-like EMFFs
- ✓ Search for 1^{--} Y states in $B\overline{B}$ final states above open charm threshold.

Octet / decuplet

Outline

DRecent results

>Study of J/ ψ , ψ (3686) \rightarrow B \overline{B} (B: baryon)

1. $J/\psi, \psi(3686) \to \Xi^{-}\overline{\Xi}^{+}, \Sigma(1385)^{+}\overline{\Sigma}(1385)^{\pm}$ 2. $J/\psi, \psi(3686) \to \Xi^{0}\overline{\Xi}^{0}, \Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$ 3. $J/\psi, \psi(3686) \to \Lambda\overline{\Lambda}, \Sigma^{0}\overline{\Sigma}^{0}$ 4. $J/\psi, \psi(3686) \to N\overline{N}(p\overline{p}, n\overline{n})$ 5. $\psi(3686) \to \Xi(1690/1820)\overline{\Xi}$

Measurement of cross section of e⁺

1. $e^+e^- \rightarrow p\overline{p}$ 2. $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ 3. $e^+e^- \rightarrow \Lambda_c\overline{\Lambda}_c$

Physical Review D 93, 0732003 (2016) Study of ψ decays to the $\Xi^-\overline{\Xi}^+$ and $\Sigma(1385)^+\overline{\Sigma}(1385)^\pm$ final states **DIRECTLY accepted for first one at BESIII!** Anything **Data samples:** 10000 $225 \times 10^{6} J/\psi \& 106 \times 10^{6} \psi (3686)$ 5000 (a) $J/\psi(\psi(2S)) \rightarrow \Xi^{-\overline{\Xi^{+}}}, \Sigma(1385)^{\overline{+}}\overline{\Sigma}(1385)^{\pm}$ (a) $J/\psi \to \Xi^- \overline{\Xi}^+$ 15000 (b) $J/\psi \rightarrow \Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ 10000 (c) $J/\psi \rightarrow \Sigma(1385)^+ \overline{\Sigma}(1385)^ \pi$ 5000 (b) (d) $\psi(3686) \rightarrow \Xi^- \overline{\Xi}^+$ $p\pi$ (e) $\psi(3686) \rightarrow \Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ 20000 $M_{\pi\Lambda}^{recoil}$ $(E_{c.m.}-E_{\pi\Lambda})^2-\vec{p}^2$ (f) ψ (3686) → Σ(1385)⁺ $\overline{\Sigma}$ (1385)⁻ = 15000 Events/ 0.1(0.2) (c) J/ψ→π⁻ΛΣ(1385)^{*} J/ψ→π^{*}ΛΣ(1385) 3000 3500 MeV/c₂ MeV/c₃ 2000 2000 2000 203000 MeX2500 (b) (a) (c) J/ψ→Ξ(1530)Ξ + c.c j/ψ→Ξ(1530)Ξ + c.c. ດ ສີ2000 0. 13000 51500 Events 1000 \$1500 1000 Store tents 1000 (d) 500 1.30 1.45 1.50 1.55 1.45 1.50 1.30 $M_{\pi^*\Lambda}^{recoil}$ (GeV/c²) M^{recoil} π⁺∧ (GeV/c²) M_{recoil} (GeV/c²) 1000 500 (e) (d) Events / 2.5 MeV/c² 002 005 001 002 002 001 002 MeV/c² (e) (f) rents / 3.0 MeV/c 1000 Events / 3.0 150Ē 500 1 40 1.25 1.30 1.35 Ľ25 1.40 1.45 1.50 1.55 1.50 1 55 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $M_{\pi^*\Lambda}^{recoil}$ $M_{\pi^{\cdot}\Lambda}^{recoil}$ (GeV/c²) (GeV/c²) (GeV/c²) cos θ

Physical Review D 93, 0732003 (2016)

Study of ψ decays to the $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{\mp}\overline{\Sigma}(1385)^{\pm}$ final states

Numerical results $(Br(N_{obs}/N_{\psi} \cdot \epsilon)$ and α values)

		Mode		$J/\psi ightarrow$			$\psi(3686) \rightarrow$	
			$\Xi^- \bar{\Xi}^+$	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	Ξ- <u>Ξ</u> +	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$
		This work	$10.40 \pm 0.06 \pm 0.74$	$10.96 \pm 0.12 \pm 0.71$	$12.58 \pm 0.14 \pm 0.78$	$2.78 \pm 0.05 \pm 0.14$	$0.85 \pm 0.06 \pm 0.06$	$0.84 \pm 0.05 \pm 0.05$
Rr_		MarkI [5]	14.00 ± 5.00			< 2.0		
DI	1	MarkII [6]	$11.40 \pm 0.80 \pm 2.00$	$8.60 \pm 1.80 \pm 2.20$	$10.3 \pm 2.4 \pm 2.5$			
(10-1)		DM2 [7]	$7.00 \pm 0.60 \pm 1.20$	$10.00 \pm 0.40 \pm 2.10$	$11.9 \pm 0.4 \pm 2.5$			
(×10 ⁻⁴)		BESII [8,12]	$9.00 \pm 0.30 \pm 1.80$	$12.30 \pm 0.70 \pm 3.00$	$15.0 \pm 0.8 \pm 3.8$	$3.03 \pm 0.40 \pm 0.32$		
		CLEO [9]				$2.40 \pm 0.30 \pm 0.20$		
		BESI [26]				$0.94 \pm 0.27 \pm 0.15$		
		PDG [3]	8.50 ± 1.60	10.30 ± 1.30	10.30 ± 1.30	1.80 ± 0.60		
		Mode		$J/\psi \rightarrow$			$\psi(3686) \rightarrow$	
			Ξ [−] Ξ ⁺	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	$\Xi^- \bar{\Xi}^+$	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$
		This work	$0.58 \pm 0.04 \pm 0.08$	$-0.58 \pm 0.05 \pm 0.09$	$-0.49 \pm 0.06 \pm 0.08$	$0.91 \pm 0.13 \pm 0.14$	$0.64 \pm 0.40 \pm 0.27$	$0.35 \pm 0.37 \pm 0.10$
α -	┥	BESII [8]	$0.35 \pm 0.29 \pm 0.06$	$-0.54 \pm 0.22 \pm 0.10$	$-0.35 \pm 0.25 \pm 0.06$			
		MarkIII [6]	0.13 ± 0.55					
		Claudson	0.16	AN I	0.11	0.32	0.29	0.29
	L	<i>et al.</i> [10] Carimalo [11]	0.27	Neg _{0.20}	0.20	0.52	0.50	0.50

> Provide more new and precise measurements and experimental evidences, But for the predictions of α values without the consideration of the higher order correction, it is deviated from the measured values.

Ratio of branching fractions $\left(\frac{Br(\psi(3686) \rightarrow X_h)}{Br(I/\psi \rightarrow X_h)}\right)$

Deviated from	
12% !	

<u> </u>	$\Sigma(1385)^{-}\Sigma(1385)^{+}$	$\Sigma(1385)^{+}\Sigma(1385)^{-}$	K	
(26.73±0.50±2.30)%	(7.76 <u>±</u> 0.55 <u>±</u> 0.68)%	(6.68±0.40±0.50)%		

> Theoretical models are expected to be improved to understand the difference.7

Physics Letters B 770 (2017) 217-225 Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$ and $\Xi^0 \overline{\Xi}^0$

Physics Letters B 770 (2017) 217-225 Study of J/ ψ and $\psi(3686) \rightarrow \Sigma(1385)^0 \overline{\Sigma}(1385)^0$ and $\Xi^0 \overline{\Xi}^0$

Numerical results (Br and α values)

_	Γ	Mode	$J/\psi \to \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi \to \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686)\to \Xi^0\bar{\Xi}^0$
Br		This work	$10.71 \pm 0.09 \pm 0.82$	$11.65 \pm 0.04 \pm 0.43$	$0.69 \pm 0.05 \pm 0.05$	$2.73 \pm 0.03 \pm 0.13$
		BESII [23]	-	$12.0 \pm 1.2 \pm 2.1$	-	-
(×10 ⁻⁴)		CLEO [24]	-	-	-	$2.75 \pm 0.64 \pm 0.61$
		Dobbs et al. [25]	-	-	-	$2.02 \pm 0.19 \pm 0.15$
		PDG [4]	-	12.0 ± 2.4	-	2.07 ± 0.23
		Mode	$J/\psi \rightarrow \Sigma (1385)^0 \bar{\Sigma} (1385)^0$	$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	$\psi(3686) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0$	$\psi(3686)\to \Xi^0\bar{\Xi}^0$
α -		This work	$-0.64 \pm 0.03 \pm 0.10$	$0.66 \pm 0.03 \pm 0.05$	$0.59 \pm 0.25 \pm 0.25$	$0.65 \pm 0.09 \pm 0.14$
		Carimalo et al. [6]	0.11 ativ	0.16	0.28	0.33
		Claudson [7]	0.19	0.28	0.46	0.53

> Provide more new and precise measurements and experimental evidences, but for the predictions of α values without the consideration of the higher order correction, it is basically deviated from the measured values. Tost of isospin conservation

Test of isospin conservation

Mode	$rac{\mathcal{B}(\psi\! ightarrow\!\Xi^0ar{\Xi}^0)}{\mathcal{B}(\psi\! ightarrow\!\Xi^-ar{\Xi}^+)}$	$\frac{\mathcal{B}(\psi \rightarrow \Sigma (1385)^0 \bar{\Sigma} (1385)^0)}{\mathcal{B}(\psi \rightarrow \Sigma (1385)^- \bar{\Sigma} (1385)^+)}$	$\frac{\mathcal{B}(\psi \rightarrow \Sigma (1385)^0 \bar{\Sigma} (1385)^0)}{\mathcal{B}(\psi \rightarrow \Sigma (1385)^+ \bar{\Sigma} (1385)^-)}$
J/ψ ψ(3686)	$\begin{array}{c} 1.12 \pm 0.01 \pm 0.07 \\ 0.98 \pm 0.02 \pm 0.07 \end{array}$	$\begin{array}{c} 0.98 \pm 0.01 \pm 0.08 \\ 0.81 \pm 0.12 \pm 0.12 \end{array}$	$\begin{array}{c} 0.85 \pm 0.02 \pm 0.09 \\ 0.82 \pm 0.11 \pm 0.11 \end{array}$

Ratio $\left(\frac{Br(\psi(3686) \rightarrow X_h)}{Br(J/\psi \rightarrow X_h)}\right)$ for testing 12% rule

 $\frac{Br(\psi(2S) \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)}{Br(J/\psi \to \Sigma(1385)^0 \bar{\Sigma}(1385)^0)} = (7.28 \pm 0.56 \pm 0.75)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(J/\psi \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(J/\psi \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \to \Xi^0 \bar{\Xi}^0)}{Br(W^0 \to \Xi^0 \bar{\Xi}^0)} = (23.43 \pm 0.27 \pm 1.28)\%, \\ \frac{Br(\psi(2S) \pm 0.27 \pm 0.28)}{Br(W^0 \to 0.27 \pm 0.28)}$

expectation of

isospin symmetry!

Deviated from 12%

Physical Review D 95, 052003 (2017) Study of J/ ψ and ψ (3686) decay to $\Lambda\overline{\Lambda}$ and $\Sigma^0\overline{\Sigma}^0$ final states

-0.5

0.5

-0.5

O

 $\cos\theta_{r_0}$

0.5

0

 $\cos\theta_{50}$

✓ The Q value is still different with the expectation of pQCD.

Observation of Λ hyperon spin polarization in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

Parameters	This work	Previous rest	ults	
$lpha_\psi$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027]	BESIII	
$\Delta \Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_		
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	PDG	
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 {\pm} 0.08$	PDG	CP asymmetry:
$ar{lpha}_0$	$-9.693 \pm 0.016 \pm 0.006$			$A_{} - \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} + \alpha_{+}}$
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG	$\prod_{n \in P} \alpha_{-} - \alpha_{+}$
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_		-

Physical Review D 86, 032014 (2012) & arXiv:1803.02039 Study of J/ ψ and ψ (3686) → N \overline{N} final states

Full reconstruction

 $|/\psi,\psi(3686) \rightarrow N\overline{N} (p\overline{p},n\overline{n})|$

Numerical results (α values and Br)

Channel	α	$Br \times 10^{-4}$
$J/\psi o p\overline{p}$	$0.60 \pm 0.01 \pm 0.02$	$21.12\pm 0.04\pm 0.31$
$J/\psi ightarrow n\overline{n}$	$0.50 \pm 0.04 \pm 0.21$	$20.70\pm 0.10\pm 1.70$
$\psi(3686) ightarrow p\overline{p}$	$1.03 \pm 0.06 \pm 0.03$	$3.05 \pm 0.02 \pm 0.12$
$\psi(3686) \rightarrow n\overline{n}$	$0.68 \pm 0.12 \pm 0.11$	$3.06 \pm 0.06 \pm 0.14$

Ratio $\left(\frac{Br(\psi(3686) \rightarrow X_h)}{Br(J/\psi \rightarrow X_h)}\right)$ for testing 12% rule $\frac{\mathcal{B}(\psi(3686) \rightarrow p\bar{p})}{\mathcal{B}(J/\psi \rightarrow p\bar{p})} = (14.4 \pm 0.6)\%$ $\frac{\mathcal{B}(\psi(3686) \rightarrow n\bar{n})}{\mathcal{B}(J/\psi \rightarrow n\bar{n})} = (14.8 \pm 1.2)\%$

- → The branching fractions are measured consistently and with high precision compared with the previous experiments. The α values are measured with high precision for J/uh
- ✓ The α values are measured with high precision for J/ ψ decay, and first measurement for $\psi(2S)$ decay.
- ✓ The Q value is consistent with the expectation of pQCD 12%.

Physical Review D 86, 032014 (2012) Observation of $\psi(3686) \rightarrow \Xi(1690/1820)\overline{\Xi}^+ + c.c.$

Two resonances are observed in $\psi(3686) \rightarrow K^- \Lambda \overline{\Xi}^+$ process

■ **PDF:** Breit-Wigner ⊗ Gaussian

$$A(m) = \frac{p_{\Lambda}(m)^{(L_{(K-\Lambda)}+1/2)} p_{\bar{\Xi}^{+}}(m)^{(L_{(\Xi^{*}-\bar{\Xi}^{+})}+1/2)}}{m-M+i\frac{\Gamma}{2}} \cdot \left(\frac{B_{L_{(K-\Lambda)}}(p_{\Lambda}(m))}{B_{L_{(K-\Lambda)}}(p'_{\Lambda})}\right) \left(\frac{B_{L_{(\Xi^{*}-\bar{\Xi}^{+})}}(p_{\bar{\Xi}^{+}}(m))}{B_{L_{(\Xi^{*}-\bar{\Xi}^{+})}}(p'_{\bar{\Xi}^{+}})}\right)$$

Mass and width (M, Γ) ; $p_{\Lambda/\Xi}$ momentum; *L* is orbital angular distribution; $B_L(p)$ Blatt-Weisskopf form factor[1].

Fitted results and resonance parameters

	$\Xi(1690)^-$	$\Xi(1820)^-$
$M({ m MeV}/c^2)$	$1687.7{\pm}3.8{\pm}1.0$	$1826.7{\pm}5.5{\pm}1.6$
$\Gamma({ m MeV})$	$27.1{\pm}10.0{\pm}2.7$	$54.4{\pm}15.7{\pm}4.2$
Event yields	$74.4{\pm}21.2$	$136.2 {\pm} 33.4$
$\operatorname{Significance}(\sigma)$	4.9	6.2
$\operatorname{Efficiency}(\%)$	32.8	26.1
${\cal B}~(10^{-6})$	$5.21{\pm}1.48{\pm}0.57$	$12.03{\pm}2.94{\pm}1.22$
$M_{ m PDG}({ m MeV}/c^2)$	$1690{\pm}10$	1823 ± 5
$\Gamma_{ m PDG}(m MeV)$	<30	24^{+15}_{-10}

The spin-parities for both resonances have not determined due to the limited statistics.

In the fit, the spin- parities for both resonances assumed to be JP = 1/2-,3/2- with previous experimental results[2,3], the $\Xi^*\overline{\Xi}$ angular momenta $L(\Xi^*\overline{\Xi})$ are set to be 0 for both resonances, while the $K^-\Lambda$ angular momenta $L(K^-\Lambda)$ are 0 and 2.

[1] B. S. Zou and D. V. Bugg, Eur. Phys. J. A16, 537 (2003).

[2] B. Aubert et al., (BABAR Collaboration), Phys. Rev. D604 78, 034008 (2008).

[3] J. B. Gay et al., Phys. Lett. B 62, 477 (1976).

Data samples:

 $106 \times 10^6 \psi(3686)$

Outline

Introduction Recent resul Cross section

5. ψ(3686) → Ξ(1690/1820)Ξ

 $\blacktriangleright \text{Measurement of cross section of } e^+e^- \rightarrow B\overline{B}$ 1. $e^+e^- \rightarrow p\overline{p}$ 2. $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ 3. $e^+e^- \rightarrow \Lambda_c\overline{\Lambda}_c$

□Summary

Physical Review D 91, 112004(2015)

Measurement of the proton form factor in $e^+e^- \rightarrow p\overline{p}$

Full reconstruction method
 Signal yields extraction by counting number of events

Data samples: $\sqrt{s} = 2.2324 \text{ to } 3.671 \text{ GeV}$

Born cross section and effective FFs

Electromagnetic G_E/G_M ratio extraction

Provide more experimental evidences about nucleon internal structure and dynamics!

Summary

BESIII is successfully operating since 2008.

Collected large data samples in the τ-charm threshold region
 Continues to take data until 2022 at least

■Many results for *BB* in 1⁻⁻ state decay have been obtained:

- \checkmark Precise measurement of Br/α for $J/\psi, \psi(2S) \rightarrow B\overline{B}$
- \checkmark New observation/measurement of $J/\psi, \psi(2S) \rightarrow B\overline{B}$
- ✓ "12% rule" is violate<u>d</u> compared with the expectation of pQCD with exception of ψ → NN.
- ✓ Born cross section of $e^+e^- \rightarrow B\overline{B}$ near threshold measured.
- ✓ The threshold effect of production cross section observed.
- ✓ Need theoretical model further explain above difference

More new results for $B\overline{B}$ in 1^{--} state decay are on the way!

Thanks for your attention !

Backup

Born cross sections and FFs

Experimentally, Born cross sections of $e^+e^- \rightarrow B\overline{B}$ are calculated by: $\sigma^B = \frac{N_{obs}}{\mathcal{L}(1+\delta)(1+\Pi)\epsilon Br(B \rightarrow hadrons)},$ where N_{obs} number of observed events, \mathcal{L} luminosity, $1 + \sigma$ ISR factor, $1 + \Pi$ vacuum polarization factor, Br the branching fraction. **Theoretically, Born cross section can be expressed as:** $\sigma^B = \frac{4\pi\alpha^2 C\beta}{3s} [|G_M|^2 + \frac{2m_B^2}{s}|G_E|^2].$ $G_{M/E}$: electric/magnetic FF $\beta = \sqrt{1 - \frac{4m_B^2}{s}}$: velosity $\alpha = \frac{1}{137}$: fine structure constant s: the square of CM energy The effective form factor defined by $|G_{eff}(s)| = \sqrt{\frac{|G_M|^2 + (\frac{2m_B^2}{s})|G_E|^2}{1 + 2m_B^2/s}}$ Coulomb factor C> For neutral B: C = 1, $> For charged B: C = eF with <math>\varepsilon = \frac{\pi\alpha}{\beta}$ and $F = \frac{\sqrt{1-\beta^2}}{1-e^{-\varepsilon}}$

is proportional to the square root of the baryon pair born cross section

$$\left|G_{eff}(s)\right| = \sqrt{\frac{3s\sigma^B}{4\pi\alpha^2 C\beta(1+\frac{2m_B^2}{s})}}.$$

The electric and magnetic form factor G_E , G_M can be expressed by the following