NME for neutrinoless double beta decay

Dong-Liang Fang

College of Physics, Jilin University, Changchun

June 20, 2018

Content

- Background
- Pormalism
- Results
- 4 conclusion

• Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

• Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

- ullet Double beta (etaeta) decay is originating from the mass staggering
- Neutrinoless etaeta-decay is possible if u=ar
 u and $m_
 u
 eq 0$

- The underlying mechanism with L-R symmetry
 - left-handed and right-handed neutrino mixing
 - $SU(2)_L$ and $SU(2)_R$ gauge boson mixing

Trivial realization of neutrinoless double beta decay with L-R symmetry

- M. Doi et. al. Prog. Theo. Phys. Suppl. 83,1(1985)
 - The general decay width of this decay can be written as following the S-matrix theory:

$$d\Gamma = 2\pi \sum_{spin} |R|^2 \delta(\epsilon_1 + \epsilon_2 + E_f - M_i) \frac{d\vec{\mathbf{p}}_1}{(2\pi)^3} \frac{d\vec{\mathbf{p}}_2}{(2\pi)^3}$$
(1)

 Here the R-matrix can be written as follows for a general L-R symmetry model

$$R = \frac{1}{2!} \left(\frac{G}{\sqrt{2}}\right)^2 2 \sum_{j} \int d\vec{\mathbf{x}} \int d\vec{\mathbf{y}} \int \frac{d\vec{\mathbf{q}}}{2\omega (2\pi)^3} e^{i\vec{\mathbf{q}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{y}})}$$

$$\times \sum_{j} \left[m_j (J_{LL}^{\rho\sigma} S_{L\rho\sigma} + J_{RR}^{\rho\sigma} S_{R\rho\sigma}) + (J_{LR}^{\rho\sigma} V_{L\rho\sigma} + J_{RL}^{\rho\sigma} V_{R\rho\sigma}) \right] (2)$$

The nuclear current has the form

$$J_{LL}^{\rho\sigma} = \langle f | J_{WL}^{\rho} | a \rangle \langle a | J_{WL}^{\sigma} | i \rangle \tag{3}$$

while the lepton current has the form

$$S_{L\rho\sigma}(\vec{\mathbf{x}}, \vec{\mathbf{y}}; a) = \frac{\bar{\psi}(\epsilon_{1}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\sigma}\psi^{C}(\epsilon_{2}, \vec{\mathbf{y}})}{\omega + E_{a} + (\epsilon_{2} - \epsilon_{1})/2}$$

$$= \frac{\bar{\psi}(\epsilon_{2}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\sigma}\psi^{C}(\epsilon_{1}, \vec{\mathbf{y}})}{\omega + E_{a} + (\epsilon_{1} - \epsilon_{2})/2}$$

$$V_{L\rho\sigma}(\vec{\mathbf{x}}, \vec{\mathbf{y}}; a) = \frac{q^{\mu}\bar{\psi}(\epsilon_{1}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\mu}\gamma_{\sigma}\psi^{C}(\epsilon_{2}, \vec{\mathbf{y}})}{\omega + E_{a} + (\epsilon_{2} - \epsilon_{1})/2}$$

$$= \frac{q^{\mu}\bar{\psi}(\epsilon_{2}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\mu}\gamma_{\sigma}\psi^{C}(\epsilon_{1}, \vec{\mathbf{y}})}{\omega + E_{a} + (\epsilon_{1} - \epsilon_{2})/2}$$

• $\psi(\epsilon, \vec{\mathbf{x}})$ is Coulomb distorted electron wave function

- For derivation of the final decay width, several assumptions are used:
- long wavelength approximation: s-wave electrons dominance, · · ·
- equal energy approximation: $\epsilon_1 = \epsilon_2$

- For derivation of the final decay width, several assumptions are used:
- long wavelength approximation: s-wave electrons dominance, · · ·
- equal energy approximation: $\epsilon_1 = \epsilon_2$
- With these approximations we could separate the nuclear part (Nuclear Matrix Elements) and the lepton part (Phase Space Factor)

$$\Gamma^{0\nu}(0^{+} \to 0^{+}) = G^{01}(\langle m_{\nu} \rangle M_{I} + \langle \eta_{N} \rangle M_{h})^{2} + \langle \lambda \rangle^{2}(G^{02}M_{\omega^{-}}^{2} + G^{04}M_{q^{-}}^{2}/9 - 2G^{03}M_{\omega^{-}}M_{q^{-}}) + \cdots$$
(4)

$$\langle m_{\nu} \rangle = |\sum_{j} (U_{ej})^{2} m_{j}|, \qquad \langle \eta_{N} \rangle = \sum_{J} \frac{(U_{eJ})^{2} m_{p}}{M_{J}}, \langle \lambda \rangle = \tan \xi \sum_{j} U_{ej} V_{ej} (g'_{V}/g_{V}) \text{ are new physics}$$
parameters

- For derivation of the final decay width, several assumptions are used:
- long wavelength approximation: s-wave electrons dominance, · · ·
- equal energy approximation: $\epsilon_1 = \epsilon_2$
- With these approximations we could separate the nuclear part (Nuclear Matrix Elements) and the lepton part (Phase Space Factor)

$$\Gamma^{0\nu}(0^{+} \to 0^{+}) = G^{01}(\langle m_{\nu} \rangle M_{I} + \langle \eta_{N} \rangle M_{h})^{2} + \langle \lambda \rangle^{2}(G^{02}M_{\omega^{-}}^{2} + G^{04}M_{q^{-}}^{2}/9 - 2G^{03}M_{\omega^{-}}M_{q^{-}}) + \cdots$$
(4)

 $\langle m_{
u}
angle = |\sum_{j} (U_{ej})^2 m_j|, \qquad \langle \eta_N
angle = \sum_{J} \frac{(U_{eJ})^2 m_p}{M_J}, \quad \sum_{j} w_j \langle \lambda
angle = 1 \text{ tan } \xi \sum_{j} U_{ej} V_{ej} (g_V'/g_V) \text{ are new physics parameters}$

• In above expression, the dominant part should that of neutrino mass terms

$$\Gamma^{0\nu} = G^{01} (\langle m_{\nu} \rangle M_I + \langle \eta_N \rangle M_h)^2$$
 (5)

 In above expression, the dominant part should that of neutrino mass terms

$$\Gamma^{0\nu} = G^{01}(\langle m_{\nu} \rangle M_I + \langle \eta_N \rangle M_h)^2 \tag{5}$$

New calculations of phase space factors using numerical electron wave functions (Kotila *et al.* PRC85,034316(2012))

Nucleus	$G_{0\nu}^{(0)}~(10^{-15}~{ m yr}^{-1})$	$G_{0\nu}^{(1)}~(10^{-15}~{ m yr}^{-1})$	$Q_{\beta\beta}$ (MeV)				
⁴⁸ Ca	24.81	-23.09	4.27226(404)				
⁷⁶ Ge	2.363	-1.954	2.03904(16)				
82Se	10.16	-9.074	2.99512(201)				
⁹⁶ Zr	20.58	-18.67	3.35037(289)				
¹⁰⁰ Mo	15.92	-14.25	3.03440(17)				
¹¹⁰ Pd	4.815	-4.017	2.01785(64)				
¹¹⁶ Cd	16.70	-14.83	2.81350(13)				
124 S n	9.040	-7.765	2.28697(153)				
¹²⁸ Te	0.5878	-0.3910	0.86587(131)				
¹³⁰ Te	14.22	-12.45	2.52697(23)				
136Xe	14.58	-12.73	2.45783(37)				
¹⁴⁸ Nd	10.10	-8.506	1.92875(192)				
¹⁵⁰ Nd	63.03	-57.76	3.37138(20)				
¹⁵⁴ Sm	3.015	-2.295	1.21503(125)				
¹⁶⁰ Gd	9.559	-7.932	1.72969(126)				
¹⁹⁸ Pt	7.556	-5.868	1.04717(311)				
²³² Th	13.93	-10.95	0.84215(246)				
^{238}U	33.61	-28.13	1.14498(125)				

Formalism

Calculation of the nuclear part (NME) depends on the nuclear structure theory. Modern nuclear structure calculations face two obstacles:

- many-body methods
 - exact Configuration Interaction approaches
 - approximate approaches with Configuration truncations: QRPA, DFT, IBM, · · ·

Formalism

Calculation of the nuclear part (NME) depends on the nuclear structure theory. Modern nuclear structure calculations face two obstacles:

- many-body methods
 - exact Configuration Interaction approaches
 - approximate approaches with Configuration truncations: QRPA, DFT, IBM, · · ·
- nuclear force
 - ab initio:
 - phenomenological realistic forces
 - Chiral forces
 - Effective interactions:
 - Skyrme, Gogny, Relativistic mean fields, · · ·

Formalism

We use the QRPA methods based on G-matrix with CD-Bonn potential

- WS meanfield + pairing from G-matrix
- G-matrix is also used for residual interactions
- deformation of nuclei is taken into consideration

Pros:

- QRPA is capable of dealing with intermediates states
- Closure approximation is used for other approaches

Cons:

- only one phonon excitations are considered
- meanfield interactions and residual interactions are of different types

Details of the calculations, the induced weak current:

$$J_{WL}^{\mu} = \bar{\Psi}\tau^{+}[g_{V}(q^{2})\gamma^{\mu} - ig_{M}(q^{2})\frac{\sigma^{\mu\nu}}{2m_{N}} - g_{A}(q^{2})\gamma^{\mu}\gamma_{5} + g_{P}(q^{2})q^{\mu}\gamma_{5}]\Psi$$
 (6)

Leads to:

$$M_{I(h)} = \langle H_{F,I(h)}(r) + H_{GT,I(h)}(r)\sigma_1 \cdot \sigma_2 + H_{T,I(h)}(r)(\sigma_1 \otimes \sigma_2)^2 : (\vec{\mathbf{r}} \otimes \vec{\mathbf{r}})^2 \rangle$$

here the most important part is the "neutrino potential":

$$H_{i,l}(r) = \frac{2}{\pi g_A^2} \frac{R}{r} \int_0^\infty \frac{\sin(qr)}{q + E_a} h_i(q^2) dq$$

$$H_{i,h}^i(r) = \frac{2}{m_p \pi g_A^2} \frac{R}{r} \int_0^\infty \sin(qr) h_i(q^2) q dq$$

Short-range correlation functions are usually multiplied

$$f(r) = c(1 - be^{-ar^2}) (7)$$

Results

DLF et al. Phys. Rev. C97,045503(2018)

					A	V18			CD Bonn								
			$g_A =$	$=g_{A0}$		$g_A = 0.75g_{A0}$					$g_A =$	$=g_{A0}$		$g_A = 0.75g_{A0}$			
		$M_F^{0 u}$	$M_{GT}^{0\nu}$	$M_T^{0\nu}$	$M_l'^{0\nu}$	$M_{F,l}^{0 u}$	$M_{GT,l}^{0\nu}$	$M_{T,l}^{0\nu}$	$M_l^{\prime 0 \nu}$	$M_F^{0 u}$	$M_{GT}^{0\nu}$	$M_T^{0 u}$	$M_l^{\prime 0 \nu}$	$M_{F,l}^{0 u}$	$M_{GT,l}^{0\nu}$	$M_{T,l}^{0\nu}$	$M_l'^{0\nu}$
$^{76}\mathrm{Ge}{ ightarrow}^{76}\mathrm{Se}$	a	-1.09	3.11	-0.44	3.34	-1.09	3.94	-0.46	2.63	-1.10	2.99	-0.40	3.27	-1.09	3.90	-0.42	2.64
	b	-1.06	2.92	-0.45	3.12	-1.06	3.70	-0.47	2.48	-1.15	3.09	-0.41	3.40	-1.15	4.00	-0.43	2.72
$^{82}\mathrm{Se}{ ightarrow}^{82}\mathrm{Kr}$	a	-1.00	2.86	-0.41	3.07	-1.00	3.61	-0.43	2.41	-1.00	2.76	-0.37	3.01	-1.00	3.58	-0.42	2.41
	b	-0.98	2.68	-0.42	2.86	-0.97	3.39	-0.38	2.26	-1.05	2.85	-0.38	3.13	-1.05	3.67	-0.39	2.49
$^{130}\mathrm{Te}{ ightarrow}^{130}\mathrm{Xe}$	a	-1.17	2.95	-0.52	3.16	-1.16	3.37	-0.55	2.31	-1.15	2.85	-0.46	3.10	-1.15	3.29	-0.49	2.29
	b	-1.13	2.73	-0.53	2.90	-1.13	3.11	-0.56	2.13	-1.21	2.95	-0.47	3.22	-1.21	3.38	-0.50	2.37
$^{136}\mathrm{Xe}{\rightarrow}^{136}\mathrm{Ba}$	a	-0.37	1.12	-0.17	1.18	-0.37	1.39	-0.17	0.91	-0.33	1.05	-0.13	1.12	-0.33	1.29	-0.14	0.85
	b	-0.36	1.06	-0.17	1.11	-0.36	1.31	-0.17	0.86	-0.35	1.10	-0.14	1.18	-0.35	1.33	-0.14	0.89
$^{150}\mathrm{Nd}{ ightarrow}^{150}\mathrm{Sm}$	a	-1.35	2.98	-0.53	3.28	-1.35	3.54	-0.56	2.52	-1.36	2.89	-0.45	3.28	-1.37	3.45	-0.52	2.50
	b	-1.32	2.74	-0.55	3.01	-1.31	3.26	-0.57	2.33	-1.43	3.00	-0.46	3.43	-1.43	3.55	-0.53	2.59

Uncertainties of the calculations

ullet nuclear force, quenching of g_A in nuclei, SRC

Results

DLF et al. Phys. Rev. C97,045503(2018)

Deviations between different calculations are still large

Results

DLF et al. Phys. Rev. C97,045503(2018)

• In case of normal hierarchy, we may have other mechanism dominant over light neutrino mass mechanism, *i.e.* heavy neutrino mass

					Α				CD Bonn										
	ш	Argonne									CD Bonn								
			$g_A =$	g_{A0}		$g_A = 0.75g_{A0}$					$g_A =$	g_{A0}		$g_A = 0.75 g_{A0}$					
		$M_{F,l}^{0 u}$	$M_{GT,l}^{0\nu}$	$M_{T,l}^{0 u}$	$M_h^{\prime 0\nu}$	$M_{F,h}^{0\nu}$	$M^{0 u}_{GT,h}$	$M_{T,h}^{0\nu}$	$M_h^{\prime 0\nu}$	$M_{F,l}^{0 u}$	$M^{0 u}_{GT,l}$	$M_{T,l}^{0\nu}$	$M_h^{\prime 0\nu}$	$M_{F,h}^{0 u}$	$M^{0 u}_{GT,h}$	$M_{T,h}^{0\nu}$	$M_h^{\prime 0\nu}$		
$^{76}\mathrm{Ge}{ ightarrow}^{76}\mathrm{Se}$	a	-109.7	369.7	-59.0	378.7	-109.5	423.1	-63.5	270.2	-111.0	370.8	-54.2	385.4	-110.8	426.6	-58.2	275.9		
	b	-83.2	198.0	-62.2	187.3	-83.1	206.1	-67.0	129.7	-102.1	287.8	-57.4	293.7	-101.9	317.8	-61.8	207.2		
$^{82}\mathrm{Se}{ ightarrow}^{82}\mathrm{Kr}$	a	-102.3	345.9	-54.1	355.3	-102.2	397.0	-58.0	254.1	-102.5	344.2	-48.9	358.7	-102.4	397.1	-52.4	257.4		
	b	-77.4	184.9	-57.0	175.9	-77.3	193.2	-61.2	122.1	-94.2	267.0	-51.8	273.6	-94.1	295.8	-55.6	193.4		
$^{130}\mathrm{Te}{ ightarrow}^{130}\mathrm{Xe}$	a	-116.1	393.0	-68.8	396.3	-116.0	440.6	-74.5	277.9	-115.9	391.5	-62.3	401.1	-115.9	439.7	-67.5	281.2		
	b	-87.7	209.5	-72.5	191.4	-87.6	213.6	-78.7	130.2	-106.4	303.4	-65.9	303.5	-106.4	326.9	-62.5	209.5		
$^{136}\mathrm{Xe}{ ightarrow}^{136}\mathrm{Ba}$	a	-37.8	133.6	-21.8	135.2	-37.8	153.2	-23.2	96.5	-32.5	113.0	-16.1	117.1	-32.4	128.5	-17.1	82.7		
	b	-28.8	72.0	-23.0	66.9	-28.8	75.0	-24.5	46.3	-30.2	88.7	-16.9	90.5	-30.2	96.5	-18.1	62.8		
$^{150}\mathrm{Nd}{ ightarrow}^{150}\mathrm{Sm}$	a	-127.4	414.7	-70.2	423.5	-127.4	466.8	-75.3	299.2	-130.8	420.0	-59.0	442.0	-127.8	466.1	-69.2	302.5		
	b	-96.3	220.4	-74.0	206.1	-96.2	226.5	-79.5	142.3	-120.1	325.0	-62.4	337.0	-117.3	346.6	-73.4	226.4		

- SRC becomes more important
- Pion's contributions may be important

Conclusion

- Neutrinoless double beta decay is very good probe for new physics beyond Standard Model
- Calculations of NME is important for the determinations of new physics parameters
- NMEs from various nuclear many-body approaches don't converge at present
- We need to understand the underlying mechanisms of this rare process

Thank You