Light Meson Decays at BESIII

Shuangli Yang (On behalf of BESIII collaboration)

Jun 20, 2018 / Shanghai

Outline

Introduction

Recent results on light meson decays

- $\succ \eta/\eta'$ decays
- $\succ a_0 f_0$ mixing

η/η' from J/ψ decays

- \succ High production rate of light mesons in J/ψ decays
- > Also a factory for light mesons $(\eta/\eta'/\omega ...)$
- $\succ \eta/\eta'$ from J/ψ radiative decays
 - $\rightarrow 7.2{\times}10^6\,\eta'$
 - $\rightarrow 2.4{\times}10^6\,\eta$

S.L.Yang(IHEP)

η/η' : a rich physics field

η	$oldsymbol{\eta}'$			
$M = 584$ MeV, $\Gamma = 1.3$ keV	$M = 958$ MeV, $\Gamma = 197$ keV			
Hadronic Decays				
$\eta \to \pi^0 \pi^0 \pi^0 \qquad 32.6\%$	$\eta' \rightarrow \pi^+ \pi^- \eta 42.9\%$			
$\eta \rightarrow \pi^+ \pi^- \pi^0$ 22.9%	$\eta' \rightarrow \pi^0 \pi^0 \eta$ 22.2%			
Radiative Decays				
$\eta \rightarrow \gamma \gamma$ 39.4%	$\eta' \rightarrow \rho^0 \gamma$ 29.1%			
$\eta \to \pi^+ \pi^- \gamma$ 4.2%	$\eta' \rightarrow \omega \gamma$ 2.7%			
	$\eta' \rightarrow \gamma \gamma$ 2.2%			
99.1%	99.1%			

text predictions by ChPT

transition form factors

text fundamental symmetries

probe physics beyond the SM

Recent Results on η/η' Decays

Hadronic decays

$$\succ \eta' \rightarrow \pi^+ \pi^- \pi^0, \ \pi^0 \pi^0 \pi^0$$
$$\succ \eta' \rightarrow \pi^+ \pi^- \eta, \ \pi^0 \pi^0 \eta$$

Radiative decays

$$\mathfrak{P} \eta' \to \gamma \gamma \pi^0$$
$$\mathfrak{P} \eta' \to \gamma \pi^+ \pi^-$$

Amplitude analysis of the decays $\eta' \rightarrow 3\pi$

$$r = \frac{\Gamma_{\eta' \to \pi^+ \pi^- \pi^0}}{\Gamma_{\eta' \to \eta \pi^+ \pi^-}} \approx (16.8) \frac{3}{16} \left(\frac{m_d - m_u}{m_s}\right)$$

D. Gross et al., Phys. Rev. D. **19**, 2188 (1979) Using ChPT, large P-wave contribution of $\eta' \rightarrow \rho^{\pm}\pi^{\mp}$ is predicted in $\eta' \rightarrow \pi^{+}\pi^{-}\pi^{0}$ [Eur. Phys. J. A 26, 383(2005)]

So far, no direct experimental evidence of η' → $\rho^{\pm}\pi^{\mp} \text{ in } \eta' \rightarrow \pi^{+}\pi^{-}\pi^{0}$

0.0

0.5

-1.0

-0.5

1.0

Amplitude analysis of the decays $\eta' \rightarrow 3\pi$

- ► Based on 1310M J/ψ data, η' from $J/\psi \rightarrow \gamma \eta'$
- ➤ Two clusters of events corresponding to η' → $ρ^{\pm}π^{\mp}$ are observed
- ➤ The decay η' → γρ and η' → π⁰π⁰η result in the peaking background

 $\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^0) = (35.91 \pm 0.54 \pm 1.74) \times 10^{-4}$ $\mathcal{B}(\eta' \to \pi^0 \pi^0 \pi^0) = (35.22 \pm 0.82 \pm 2.54) \times 10^{-4}$

➤ The branching fractions of $\eta' \rightarrow \pi^+ \pi^- \pi^0$ and $\eta' \rightarrow \pi^0 \pi^0 \pi^0$ are in good agreement with previous BESIII results (Phys. Rev. Lett. 108, 182001 (2012))

Phys. Rev. Lett. **118**, 012001 (2017) 7

Amplitude analysis of the decays $\eta' \rightarrow 3\pi$

Phys. Rev. Lett. **118**, 012001 (2017)

Decay Mode	$B(10^{-4})$
$\pi^+\pi^-\pi^0$	$35.91 \pm 0.54 \pm 1.74$
$\pi^0\pi^0\pi^0$	$35.22 \pm 0.82 \pm 2.54$
$ ho^{\pm}\pi^{\mp}$	$7.44 \pm 0.60 \pm 1.26 \pm 1.84$
$(\pi^+\pi^-\pi^0)_S$	37.63 ± 0.77 ± 2.22 ± 4.48

- > Amplitude analysis combining $\eta' \to \pi^+ \pi^- \pi^0$ and $\eta' \to \pi^0 \pi^0 \pi^0$.
- > Described by three components: P wave $\rho^{\pm}\pi^{\mp}$), resonant S wave ($\sigma\pi^{0}$), phase-space S wave ($\pi\pi\pi$)
- > The P-wave contribution from ρ^{\pm} is observed for the first time with high statistical significance.
- ➢ Obtained decay width ratios: $r_{\pm} = (8.77 \pm 1.19) \times 10^{-3}$ $r_{0} = (15.86 \pm 1.33) \times 10^{-3}$

Matrix elements for the decays $\eta' \rightarrow \pi^+ \pi^- \eta$, $\pi^0 \pi^0 \eta$

- > Impact of gluon component on the dynamics of η' decays
- Comparison to the theoretical calculations with the effective ChPT
- → Previous measurements on the dalitz plot of $\eta' \rightarrow \pi \pi \eta$ are from VES, GAMS and CLEO

$$X = \frac{\sqrt{3}(T_{\pi^+} - T_{\pi^-})}{Q}, \qquad \qquad Y = \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{T_{\eta}}{Q} - 1$$

 $T_{\pi,\eta}$ denote the kinetic energies of a pion and η in the η' rest frame

$$Q = T_{\eta} + T_{\pi^+} + T_{\pi^-} = m_{\eta'} - m_{\eta} - 2m_{\pi}$$

Two representations used

$$|M(X,Y)|^{2} = N(1 + aY + bY^{2} + cX + dX^{2} + \cdots) \text{ (general representation)}$$
$$|M(X,Y)|^{2} = N(|1 + aY|^{2} + cX + dX^{2} + \cdots) \text{ (linear representation)}$$

Phys. Rev. D. 97, 012003(2018)

Matrix elements for the decays $\eta' \rightarrow \pi^+ \pi^- \eta$, $\pi^0 \pi^0 \eta$

(b)

1.0

This work

-0.056(4)(2)

-0.049(6)(6)

-0.063(4)(3)

-0.034(2)(2)

0.000(19)(1)

0.0027(24)(15)

-0.053(4)(4)

0.0027(24)(18)

Data/Linear

0.5

Y

10 Phys. Rev. D. 97, 012003(2018)

S.L.Yang(IHEP)

Shanghai, Jun 20, 2018

 \succ

-1

10⁵

10⁴

10³

10² ⊧

10

Entries/(2.5MeV/c²)

Matrix elements for the decays $\eta' \rightarrow \pi^+ \pi^- \eta$, $\pi^0 \pi^0 \eta$

11

Phys. Rev. D. 97, 012003(2018)

Shanghai, Jun 20, 2018

0.5

-0.5

-1

10⁴

 10^{3}

 0^{2}

0.85

Entries/($2.5MeV/c^2$)

≻ 0

S.L.Yang(IHEP)

Search for cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$

 \blacktriangleright With current statistics , it is difficult to establish cusp effect near the $\pi\pi$ mass threshold.

S.L.Yang(IHEP)

Phys. Rev. D 97, 012003(2018)

Observation of the doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$

- Test QCD calculations on the transition form factor
- Check the high order of ChPT
- > In experiment, only an upper limit of $\mathcal{B}(\eta' \to \gamma \gamma \pi^0) < 8 \times 10^{-4}$ at 90% C.L.
- † $\eta' \rightarrow \gamma \gamma \pi^0$: Signal shape from MC, incoherent mixture of *ρ*, *ω* and non-resonant components.
- [†] Class-I background: $J/\psi \rightarrow \gamma \eta'$ with η' decaying into other final states other than the signal final state.
- [†] Class-II background: J/ψ decays without η' $(J/\psi \rightarrow \gamma \pi^0 \pi^0 \text{ and } J/\psi \rightarrow \omega \eta \text{ with } \omega \rightarrow \gamma \pi^0$ and $\eta \rightarrow \gamma \gamma$)

Phys. Rev. D 96, 012005(2017)

	$\eta^\prime o \gamma\gamma\pi^0$ (Inclusive)	$\eta' ightarrow \gamma \omega, \omega ightarrow \gamma \pi^0$	$\eta' ightarrow \gamma \gamma \pi^0$ (Non-resonant)
$N^{\eta'}$	$3435 \pm 76 \pm 244$	$2340 \pm 141 \pm 180$	$655 \pm 68 \pm 71$
E	16.1%	14.8%	15.9%
$B(10^{-4})$	$32.0 \pm 0.7 \pm 2.3$	$23.7 \pm 1.4 \pm 1.8^{a}$	$6.16 \pm 0.64 \pm 0.67$
$\mathcal{B}_{PDG}~(10^{-4})$	—	21.7 ± 1.3^{b}	< 8 [9]
Predictions (10^{-4})	57 [7], 65 [8]	_	_

Phys. Rev. D 96, 012005(2017)

Linear σ model & VMD

[7] R. Jora, Nucl. Phys. Proc. Suppl. 207-208, 224(2010);

[8] R. Escribano, *Proc. Sci.*, QNP2012 (2012) 079;

[9]D. Alde et al. (GAMS-2000), Z. Phys. C 36, 603 (1987).

Precision Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

- ➤ In Vector Meson Dominance (VMD) model, this process is dominated by $\eta' \rightarrow \gamma \rho(770)$
- Studied by several experiments, a lone ρ^0 contribution did not describe the exp. data
- This discrepancy could be attributed to the Wess Zumino-Witten anomaly in the ChPT, known as the box anomaly.
- Recently a model-independent approach based on ChPT are proposed

The dipion mass differential rate :

$$\frac{d\Gamma}{dM(\pi^+\pi^-)} = \frac{k_{\gamma}^3 q_{\pi}^3(s)}{48\pi^3} |A|^2$$

Precision Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

1). fit with $\rho(770) - \omega$ -box anomaly 2). fit with $\rho(770) - \omega - \rho(1450)$

- \succ Besides $\rho(770)$, the ω is needed

Model-dependent fit

- $\succ \rho(770) \omega$ cannot describe data well
- Extra contribution (maybe $\rho(1450)$ or box-anomaly, maybe both of them) is also necessary to provide a good description of data Phys. Rev. Lett. **120**, 242003(2018),

30000₁

Precision Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

Model independent fit

- $\succ A = N \cdot P(s) \cdot F_V(s)$
- $\succ P(s) = 1 + \kappa \cdot s + \lambda \cdot s^2 + \xi \cdot BW_{\omega} + \mathcal{O}(s^4)$
- \succ $F_V(s)$ is the pion vector form factor

Fit results:

- \succ κ = (0.992 ± 0.039 ± 0.067 ± 0.163)GeV⁻²
- \succ λ = (−0.523 ± 0.039 ± 0.066 ± 0.181)GeV⁻⁴
- $\succ \ \xi = 0.199 \pm 0.006 \pm 0.011 \pm 0.007$
- \succ The ω is necessary
- > Quadratic term and the ω contribution are significant, linear polynomial is insufficient

Phys. Rev. Lett. 120, 242003(2018),

Observation of $a_0(980) - f_0(980)$ Mixing

 $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0$

€SШ

 $\chi_{c1} \rightarrow \pi^0 a_0^0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$

Observation of $a_0(980) - f_0(980)$ Mixing

• Mixing intensity is crucial to understand the nature of $a_0^0(980)$ and $f_0(980)$

 $\succ \xi_{fa} = \frac{\mathcal{B}(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0)}{\mathcal{B}(J/\psi \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi)}$

$$\succ \xi_{af} = \frac{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-)}{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta)}$$

> Final results of the branching fractions and the intensities of the $a_0^0(980) - f_0(980)$ mixing

Channel	$f_0(980) \to a_0^0(980)$		$a^{0}(080) \rightarrow f_{0}(080)$
	Solution I	Solution II	$a_0(980) \to f_0(980)$
$\mathcal{B}(\text{mixing}) \ (10^{-6})$	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
${\cal B}({ m EM})~(10^{-6})$	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	
$\mathcal{B}(\text{total}) \ (10^{-6})$	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	
<i>ξ</i> (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$

Summary

◆ A unique place to study light meson decays

- ➢ Observation of η' → ρ[±]π[∓] in η' → πππ
- > Dalitz plot of $\eta' \to \pi^+ \pi^- \eta$, $\pi^0 \pi^0 \eta$
- Study of $η' → γπ^+π^-$ decay dynamics
- ➢ Observation of η' → γγπ⁰
- ▶ First observation of $a_0^0(980) f_0(980)$ mixing
- BESIII is an ideal laboratory to study light meson decays
- 1.3 billion + 3.7 billion (2017-2018) J/ψ events
- More interesting light meson decays are expected

Thanks for your attention!

BESIII publications on η/η' decays

- * $\eta' \rightarrow \pi^+ \pi^- \eta$
- * $\eta/\eta' \rightarrow \pi^+\pi^-, \pi^0\pi^0$
- * $\eta' \rightarrow \pi^+ \pi^- \pi^0$, $\pi^0 \pi^0 \pi^0$
- * $\eta/\eta' \rightarrow \text{invisible}$
- * weak decay
- * $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$
- * $\eta' \rightarrow 3(\pi^+\pi^-)$
- * $\eta' \to 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$
- * $\eta' \rightarrow \gamma e^+ e^-$
- * $\eta \rightarrow \pi^+ \pi^- \pi^0$, $\eta/\eta' \rightarrow \pi^0 \pi^0 \pi^0$
- * $\eta' \rightarrow \omega e^+ e^-$
- * $\eta' \to K\pi$
- * $\eta' \to \rho \pi$
- * $\eta' \rightarrow \gamma \gamma \pi^0$
- * $\eta' \rightarrow \pi^+ \pi^- \eta, \eta' \rightarrow \pi^0 \pi^0 \eta$
- * $\eta' \rightarrow \gamma \pi^+ \pi^-$

- Phys. Rev. D 83, 012003 (2011) Phys. Rev. D 84, 032006 (2011) Phys. Rev. Lett. 108, 182001 (2012) Phys. Rev. D 87, 012009 (2013) Phys. Rev. D 87, 032006 (2013) Phys. Rev. D 87, 092011 (2013) Phys. Rev. D 88, 091502 (2013) Phys. Rev. Lett **112**, 251801 (2014) Phys. Rev. D 92, 012001 (2015) Phys. Rev. D 92, 012014 (2015) Phys. Rev. D 92, 051101 (2015) Phys. Rev. D 93, 072008 (2016) Phys. Rev. Lett. 118, 012001 (2017) Phys. Rev. D 96, 012005 (2017) Phys. Rev. D 97, 012003 (2018)
- arXiv:1712.01525 Accepted by PRL