Light Meson Decays at BESIII

Shuangli Yang

(On behalf of BESIII collaboration)
Jun 20, 2018 / Shanghai

Outline

- Introduction
\checkmark Recent results on light meson decays
> η / η^{\prime} decays
$>a_{0}-f_{0}$ mixing
\bullet Summary

$>$ BESIII: τ-charm factory
$>$ High production rate of light mesons in J / ψ decays
$>$ Also a factory for light mesons ($\eta / \eta^{\prime} / \omega \ldots$)
$>\eta / \eta^{\prime}$ from J / ψ radiative decays
$\rightarrow 7.2 \times 10^{6} \eta^{\prime}$
$\rightarrow 2.4 \times 10^{6} \eta$

$\boldsymbol{\eta} / \boldsymbol{\eta}^{\prime}$: a rich physics field

η	η^{\prime}
$M=584 \mathrm{MeV}, \Gamma=1.3 \mathrm{keV}$	$\mathrm{M}=958 \mathrm{MeV}, \Gamma=197 \mathrm{keV}$

Hadronic Decays

$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$	32.6%	$\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$	42.9%
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	22.9%	$\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$	22.2%
Radiative Decays			
$\eta \rightarrow \gamma \gamma$	39.4%	$\eta^{\prime} \rightarrow \rho^{0} \gamma$	29.1%
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	4.2%	$\eta^{\prime} \rightarrow \omega \gamma$	2.7%
	$\eta^{\prime} \rightarrow \gamma \gamma$		2.2%
99.1%			
99.1%			

text predictions by ChPT
transition form factors
$>$ text fundamental symmetries
probe physics beyond the SM

Recent Results on η / η^{\prime} Decays

\checkmark Hadronic decays

$$
\begin{aligned}
& >\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \pi^{0} \pi^{0} \\
& >\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \pi^{0} \pi^{0} \eta
\end{aligned}
$$

- Radiative decays

$$
\begin{aligned}
& >\eta^{\prime} \rightarrow \gamma \gamma \pi^{0} \\
& >\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}
\end{aligned}
$$

Amplitude analysis of the decays $\eta^{\prime} \rightarrow 3 \pi$

$>\eta^{\prime} \rightarrow 3 \pi$ are isospin-violating processes due to the $d-u$ quark mass difference
$>$ light quark mass ratio $\left(m_{d}-m_{u}\right) / m_{s}$ can be extracted by the ratio of decay widths:

$$
r=\frac{\Gamma_{\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}}}{\Gamma_{\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}}} \approx(16.8) \frac{3}{16}\left(\frac{m_{d}-m_{u}}{m_{s}}\right)^{2}
$$

D. Gross et al., Phys. Rev. D. 19, 2188 (1979)
$>$ Using ChPT, large P-wave contribution of $\eta^{\prime} \rightarrow$ $\rho^{ \pm} \pi^{\mp}$ is predicted in $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ [Eur. Phys. J. A 26, 383(2005)]
$>$ So far, no direct experimental evidence of $\eta^{\prime} \rightarrow$ $\rho^{ \pm} \pi^{\mp}$ in $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

Amplitude analysis of the decays $\eta^{\prime} \rightarrow 3 \pi$

$>$ Based on $1310 \mathrm{M} J / \psi$ data, η^{\prime} from $J / \psi \rightarrow \gamma \eta^{\prime}$
$>$ Two clusters of events corresponding to $\eta^{\prime} \rightarrow$ $\rho^{ \pm} \pi^{\mp}$ are observed
$>$ The decay $\eta^{\prime} \rightarrow \gamma \rho$ and $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$ result in the peaking background

$$
\begin{aligned}
& \mathcal{B}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(35.91 \pm 0.54 \pm 1.74) \times 10^{-4} \\
& \mathcal{B}\left(\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)=(35.22 \pm 0.82 \pm 2.54) \times 10^{-4}
\end{aligned}
$$

$>$ The branching fractions of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta^{\prime} \rightarrow$ $\pi^{0} \pi^{0} \pi^{0}$ are in good agreement with previous BESIII results (Phys. Rev. Lett. 108, 182001 (2012))

$\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \pi^{0} \quad 2237 \eta^{\prime}$ events

Amplitude analysis of the decays $\eta^{\prime} \rightarrow 3 \pi$

Phys. Rev. Lett. 118, 012001 (2017)

Decay Mode	$B\left(10^{-4}\right)$
$\pi^{+} \pi^{-} \pi^{0}$	$35.91 \pm 0.54 \pm 1.74$
$\pi^{0} \pi^{0} \pi^{0}$	$35.22 \pm 0.82 \pm 2.54$
$\rho^{ \pm} \pi^{\mp}$	$7.44 \pm 0.60 \pm 1.26 \pm 1.84$
$\left(\pi^{+} \pi^{-} \pi^{0}\right)_{S}$	$37.63 \pm 0.77 \pm 2.22 \pm 4.48$

$>$ Amplitude analysis combining $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \pi^{0}$.
$>$ Described by three components: P wave $\rho^{ \pm} \pi^{\mp}$), resonant S wave $\left(\sigma \pi^{0}\right)$, phase-space S wave $(\pi \pi \pi)$
$>$ The P-wave contribution from $\rho^{ \pm}$is observed for the first time with high statistical significance.
$>$ Obtained decay width ratios:

$$
\begin{aligned}
& r_{ \pm}=(8.77 \pm 1.19) \times 10^{-3} \\
& r_{0}=(15.86 \pm 1.33) \times 10^{-3}
\end{aligned}
$$

Matrix elements for the decays $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \pi^{0} \pi^{0} \eta$

$>$ Impact of gluon component on the dynamics of η^{\prime} decays
$>$ Comparison to the theoretical calculations with the effective ChPT
$>$ Previous measurements on the dalitz plot of $\eta^{\prime} \rightarrow \pi \pi \eta$ are from VES, GAMS and CLEO

$$
X=\frac{\sqrt{3}\left(T_{\pi^{+}}-T_{\pi^{-}}\right)}{Q}, \quad Y=\frac{m_{\eta}+2 m_{\pi}}{m_{\pi}} \frac{T_{\eta}}{Q}-1
$$

$T_{\pi, \eta}$ denote the kinetic energies of a pion and η in the η^{\prime} rest frame

$$
Q=T_{\eta}+T_{\pi^{+}}+T_{\pi^{-}}=m_{\eta^{\prime}}-m_{\eta}-2 m_{\pi}
$$

Two representations used

$$
\begin{aligned}
& |M(X, Y)|^{2}=N\left(1+a Y+b Y^{2}+c X+d X^{2}+\cdots\right) \text { (general representation) } \\
& |M(X, Y)|^{2}=N\left(|1+\alpha Y|^{2}+c X+d X^{2}+\cdots\right) \text { (linear representation) }
\end{aligned}
$$

Matrix elements for the decays $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \pi^{0} \pi^{0} \eta$
BESIII

$\underline{\text { Parameter }}$	$\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$				
	EFT [5]	Large N_{C} [7]	RChT [7]	VES [10]	This work
a	-0.116(11)	-0.098(48)) (fixed)	-0.127(18)	-0.056(4)(2)
b	-0.042(34)	-0.050(1)	-0.033(1)	-0.106(32)	-0.049(6)(6)
c	+0.015(18)	0.0027(24)(18)
d	+0.010(19)	-0.092(8)	-0.072(1)	-0.082(19)	-0.063(4)(3)
$\mathfrak{R}(\alpha)$	-0.072(14)	-0.034(2)(2)
$\mathfrak{J}(\alpha)$	\ldots	\ldots	\ldots	0.000(100)	0.000(19)(1)
c	\ldots	\ldots	\ldots	+0.020(19)	0.0027(24)(15)
d	\ldots	\ldots	\cdots	-0.066(34)	-0.053(4)(4)
	S.L.Yang(IH	Phys.	. Rev. D. 97	012003(20	8) 10

Matrix elements for the decays $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \pi^{0} \pi^{0} \eta$

	$\eta^{\prime} \rightarrow \eta \pi^{\mathrm{o}} \pi^{\mathrm{o}}$		
Parameter	EFT [5]	GAMS-4 $[12]$	This work
a	$-0.127(9)$	$-0.067(16)$	$-0.087(9)(6)$
b	$-0.049(36)$	$-0.064(29)$	$-0.073(14)(5)$
c	\cdots	\cdots	\cdots
d	$+0.011(21)$	$-0.067(20)$	$-0.074(9)(4)$
$\Re(\alpha)$	\cdots	$-0.042(8)$	$-0.054(4)(1)$
$\Im(\alpha)$	\cdots	$0.000(70)$	$0.000(38)(2)$
c	\cdots	\cdots	\cdots
d	\cdots	$-0.054(19)$	$-0.061(9)(5)$

Search for cusp effect in $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$

BESIII

$>$ With current statistics , it is difficult to establish cusp effect near the $\pi \pi$ mass threshold.

Observation of the doubly radiative decay $\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$

$>$ Test QCD calculations on the transition form factor
Check the high order of ChPT
$>$ In experiment, only an upper limit of

$$
\mathcal{B}\left(\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}\right)<8 \times 10^{-4} \text { at } 90 \% \text { C.L. }
$$

$\dagger \eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$: Signal shape from MC, incoherent mixture of ρ, ω and non-resonant components.
\dagger Class-I background: $J / \psi \rightarrow \gamma \eta^{\prime}$ with η^{\prime} decaying into other final states other than the signal final state.
\dagger Class-II background: J / ψ decays without η^{\prime} $\left(J / \psi \rightarrow \gamma \pi^{0} \pi^{0}\right.$ and $J / \psi \rightarrow \omega \eta$ with $\omega \rightarrow \gamma \pi^{0}$ and $\eta \rightarrow \gamma \gamma$)

Phys. Rev. D 96, 012005(2017)

	$\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$ (Inclusive)	$\eta^{\prime} \rightarrow \gamma \omega, \omega \rightarrow \gamma \pi^{0}$	$\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$ (Non-resonant)
$N^{\eta^{\prime}}$	$3435 \pm 76 \pm 244$	$2340 \pm 141 \pm 180$	$655 \pm 68 \pm 71$
ϵ	16.1%	14.8%	15.9%
$\mathcal{B}\left(10^{-4}\right)$	$32.0 \pm 0.7 \pm 2.3$	$23.7 \pm 1.4 \pm 1.8^{a}$	$6.16 \pm 0.64 \pm 0.67$
$\mathcal{B}_{P D G}\left(10^{-4}\right)$	-	21.7 ± 1.3^{b}	$<8[9]$
Predictions $\left(10^{-4}\right)$	$57[7], 65[8]$	-	-

Linear σ model \& VMD

[7] R. Jora, Nucl. Phys. Proc. Suppl. 207-208, 224(2010);
[8] R. Escribano, Proc. Sci., QNP2012 (2012) 079;
[9]D. Alde et al. (GAMS-2000), Z. Phys. C 36, 603 (1987).

Precision Study of $\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$Decay Dynamics

$>\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$is the second most decay mode, with
(29.1 ± 0.5) \%
$>$ In Vector Meson Dominance (VMD) model, this process is dominated by $\eta^{\prime} \rightarrow \gamma \rho$ (770)
$>$ Studied by several experiments, a lone ρ^{0} contribution did not describe the exp. data
$>$ This discrepancy could be attributed to the Wess-Zumino-Witten anomaly in the ChPT, known as the box anomaly.
$>$ Recently a model-independent approach based on ChPT are proposed

The dipion mass differential rate:

$$
\frac{d \Gamma}{d M\left(\pi^{+} \pi^{-}\right)}=\frac{k_{\gamma}^{3} q_{\pi}^{3}(s)}{48 \pi^{3}}|A|^{2}
$$

Precision Study of $\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$Decay Dynamics

1). fit with $\rho(770)-\omega$-box anomaly

\Rightarrow Besides $\rho(770)$, the ω is needed
$>\rho(770)-\omega$ cannot describe data well
$>$ Extra contribution (maybe $\rho(1450)$ or box-anomaly, maybe both of them) is also necessary to provide a good description of data Phys. Rev. Lett. 120, 242003(2018),

Precision Study of $\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$Decay Dynamics

Model independent fit
$>A=N \cdot P(s) \cdot F_{V}(s)$
$>P(s)=1+\kappa \cdot s+\lambda \cdot s^{2}+\xi \cdot B W_{\omega}+\mathcal{O}\left(s^{4}\right)$
$>F_{V}(s)$ is the pion vector form factor
Fit results:
$>\kappa=(0.992 \pm 0.039 \pm 0.067 \pm 0.163) \mathrm{GeV}^{-2}$
$>\lambda=(-0.523 \pm 0.039 \pm 0.066 \pm 0.181) \mathrm{GeV}^{-4}$
> $\xi=0.199 \pm 0.006 \pm 0.011 \pm 0.007$
\Rightarrow The ω is necessary
$>$ Quadratic term and the ω contribution are significant, linear polynomial is insufficient

Phys. Rev. Lett. 120, 242003(2018),

Observation of $a_{0}(980)-f_{0}(980)$ Mixing

$J / \psi \rightarrow \phi f_{0}(980) \rightarrow \phi a_{0}^{0}(980) \rightarrow \phi \eta \pi^{0}$

$$
\chi_{c 1} \rightarrow \pi^{0} a_{0}^{0}(980) \rightarrow \pi^{0} f_{0}(980) \rightarrow \pi^{0} \pi^{+} \pi^{-}
$$

ccepted by PRL

Observation of $\mathrm{a}_{0}(980)-f_{0}(980)$ Mixing

- Mixing intensity is crucial to understand the nature of $a_{0}^{0}(980)$ and $f_{0}(980)$

$$
\begin{aligned}
& >\xi_{f a}=\frac{\mathcal{B}\left(J / \psi \rightarrow \phi f_{0}(980) \rightarrow \phi a_{0}^{0}(980) \rightarrow \phi \eta \pi^{0}\right)}{\mathcal{B}\left(J / \psi \rightarrow \phi f_{0}(980) \rightarrow \phi \pi \pi\right)} \\
& >\xi_{a f}=\frac{\mathcal{B}\left(\chi_{c 1} \rightarrow \pi^{0} a_{0}^{0}(980) \rightarrow \pi^{0} f_{0}(980) \rightarrow \pi^{0} \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\chi_{c 1} \rightarrow \pi^{0} a_{0}^{0}(980) \rightarrow \pi^{0} \pi^{0} \eta\right)}
\end{aligned}
$$

Final results of the branching fractions and the intensities of the $a_{0}^{0}(980)-f_{0}(980)$ mixing

Channel	$f_{0}(980) \rightarrow a_{0}^{0}(980)$		$a_{0}^{0}(980) \rightarrow f_{0}(980)$
$\mathcal{B}($ mixing $)\left(10^{-6}\right)$	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
$\mathcal{B}($ EM $)\left(10^{-6}\right)$	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	-
\mathcal{B} (total) $\left(10^{-6}\right)$	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	-
$\xi(\%)$	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$

Summary

\bullet A unique place to study light meson decays
$>$ Observation of $\eta^{\prime} \rightarrow \rho^{ \pm} \pi^{\mp}$ in $\eta^{\prime} \rightarrow \pi \pi \pi$
$>$ Dalitz plot of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \pi^{0} \pi^{0} \eta$
$>$ Study of $\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$decay dynamics
> Observation of $\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$
> First observation of $a_{0}^{0}(980)-f_{0}(980)$ mixing

- BESIII is an ideal laboratory to study light meson decays
$\checkmark 1.3$ billion +3.7 billion (2017-2018) J/ ψ events
- More interesting light meson decays are expected

Thanks for your attention!

BESIII publications on η / η^{\prime} decays

* $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$
* $\eta / \eta^{\prime} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
* $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \pi^{0} \pi^{0}$
* $\eta / \eta^{\prime} \rightarrow$ invisible
* weak decay
* $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} l^{+} l^{-}$
* $\eta^{\prime} \rightarrow 3\left(\pi^{+} \pi^{-}\right)$
* $\eta^{\prime} \rightarrow 2\left(\pi^{+} \pi^{-}\right), \pi^{+} \pi^{-} \pi^{0} \pi^{0}$
* $\eta^{\prime} \rightarrow \gamma e^{+} e^{-}$
* $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}, \eta / \eta^{\prime} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
* $\eta^{\prime} \rightarrow \omega e^{+} e^{-}$
* $\eta^{\prime} \rightarrow K \pi$
* $\eta^{\prime} \rightarrow \rho \pi$
* $\eta^{\prime} \rightarrow \gamma \gamma \pi^{0}$
* $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$
* $\eta^{\prime} \rightarrow \gamma \pi^{+} \pi^{-}$

Phys. Rev. D 83, 012003 (2011)
Phys. Rev. D 84, 032006 (2011)
Phys. Rev. Lett. 108, 182001 (2012)
Phys. Rev. D 87, 012009 (2013)
Phys. Rev. D 87, 032006 (2013)
Phys. Rev. D 87, 092011 (2013)
Phys. Rev. D 88, 091502 (2013)
Phys. Rev. Lett 112, 251801 (2014)
Phys. Rev. D 92, 012001 (2015)
Phys. Rev. D 92, 012014 (2015)
Phys. Rev. D 92, 051101 (2015)
Phys. Rev. D 93, 072008 (2016)
Phys. Rev. Lett. 118, 012001 (2017)
Phys. Rev. D 96, 012005 (2017)
Phys. Rev. D 97, 012003 (2018)
arXiv:1712.01525 Accepted by PRL

