Charmed Meson Semi－leptonic Decays At BESIII

Youhua Yang（杨友华）
Nanjing University
（On Behalf of BESIII collaboration）

Outline

- BESIII detector
- Charm meson semileptonic decay
- $D_{s}^{+} \rightarrow \eta^{(\prime)} e^{+} v_{e}$ decays
- Rare semileptonic decays of D
- $D^{+} \rightarrow D^{0} e^{+} v_{e}$ decay
- $D^{+} \rightarrow \gamma e^{+} v_{e}$ decay
- $D^{+(0)} \rightarrow a^{0}(980)^{0(-)} e^{+} v_{e}$ decays
- Summary

BEPCII

CHEP2018, Shanghai

BESIII Detector

Magnet: 1 T Super conducting

EMC: Csl crystal, 28 cm
$\Delta E / E=2.5 \%$ @ 1 GeV

$$
\sigma_{z}=0.6 \mathrm{~cm} / \sqrt{E}
$$

CHEP2018, Shanghai

$D_{s}^{+} \rightarrow \boldsymbol{\eta}^{(\prime)} \boldsymbol{e}^{+} \boldsymbol{v}_{\boldsymbol{e}}$

$>\eta-\eta$ ' mixing angle

$$
\binom{|\eta\rangle}{\left|\eta^{\prime}\right\rangle}=\left(\begin{array}{cc}
\cos \phi_{P} & -\sin \phi_{P} \\
\sin \phi_{P} & \cos \phi_{P}
\end{array}\right)\binom{\left|\eta_{q}\right\rangle}{\left|\eta_{s}\right\rangle}
$$

$$
\frac{\Gamma\left(D_{s}^{+} \rightarrow \eta^{\prime} e^{+} \nu\right) / \Gamma\left(D_{s}^{+} \rightarrow \eta e^{+} \nu\right)}{\Gamma\left(D^{+} \rightarrow \eta^{\prime} e^{+} \nu\right) / \Gamma\left(D^{+} \rightarrow \eta e^{+} \nu\right)} \simeq \cot ^{4} \phi_{P}
$$

$>$ Differential partial widths

$$
\begin{aligned}
& \Gamma\left(D_{s}^{+} \rightarrow \eta^{(\prime)} e^{+} v_{e}\right)=\frac{G_{f}^{2}}{24 \pi^{3}}\left|V_{c s}\right|^{2}\left|\vec{p}_{\eta^{\prime \prime}}\right|^{3}\left|f_{+}^{\eta^{(\prime)}}\left(q^{2}\right)\right|^{2} d q^{2} \\
& \text { Simple pole } \\
& f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{1-\frac{q^{2}}{M_{\text {pole }}^{2}}}
\end{aligned}
$$

Modified pole

$$
f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{\left(1-\frac{q^{2}}{M_{\text {pole }}^{2}}\right)\left(1-\alpha \frac{q^{2}}{M_{\text {pole }}^{2}}\right)}
$$

Series expansion

$$
f_{+}(t)=\frac{1}{P(t) \Phi\left(t, t_{0}\right)} a_{0}\left(t_{0}\right)\left(1+\sum_{i=1}^{\infty} r_{k}\left(t_{0}\right)\left[z\left(t, t_{0}\right)\right]^{k}\right)
$$

- Measurements of $f_{+}^{D_{s} \rightarrow \eta^{(1)}}(0)$ will be crucial to calibrate the theoretical calculations
- Extraction of $\left|V_{c S}\right|$ provides complementary data to test the unitarity of the CKM matrix
- The ratio of $\mathrm{B}\left[D_{S}^{+} \rightarrow \eta e^{+} v_{e}\right] / \mathrm{B}\left[D_{S}^{+} \rightarrow \eta^{\prime} e^{+} v_{e}\right]$ helps to determine $\eta-\eta^{\prime}$ mixing angle (ϕ_{P})

Analysis Technique

Single tag yield:

$$
N_{\mathrm{ST}}^{i}=2 \times N_{\mathrm{D}_{\mathrm{s}}^{*+} \mathrm{D}_{\mathrm{s}}^{-}} \times B_{\mathrm{ST}}^{i} \times \epsilon_{\mathrm{ST}}^{i}
$$

Double tag yield:

$$
N_{\mathrm{DT}}^{i}=2 \times N_{\mathrm{D}_{\mathrm{s}}^{*+} \mathrm{D}_{\mathrm{s}}^{-}} \times B_{\mathrm{ST}}^{i} \times B_{\mathrm{SL}} \times
$$

$$
\epsilon_{\text {STvs.SL }}^{i}
$$

Branching fraction:

$$
B_{\mathrm{SL}}=\frac{N_{\mathrm{DT}}}{N_{\mathrm{ST}}^{\mathrm{tot}} \times \bar{\epsilon}_{\mathrm{SL}}}, N_{\mathrm{ST}}^{\mathrm{tot}}=\sum_{i} N_{\mathrm{ST}}^{i}
$$

Average efficiency:

$$
\begin{gathered}
\bar{\epsilon}_{\mathrm{SL}}= \\
\sum_{i=1}^{N}\left(N_{\mathrm{ST}}^{i} \times \epsilon_{\mathrm{STvs} . S L}^{i} / \epsilon_{\mathrm{ST}}^{i}\right) / \sum_{i=1}^{N} N_{\mathrm{ST}}^{i}
\end{gathered}
$$

Single Tag D_{s}^{-}

- The blue curves are total fits: signal MC shape convoluted Gaussian + polynomial function
- The red dotted curves are the fitted combinatorial backgrounds: polynomial function
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{\mathrm{s}}^{*+} \mathrm{D}_{\mathrm{s}}^{-}, \mathrm{D}_{\mathrm{s}}^{*+} \rightarrow\left(\gamma / \pi^{0}\right) \mathrm{D}_{\mathrm{s}}^{+}+$c.c.
395142 ± 1923 tagged D_{s} mesons with $3.2 \mathrm{fb}^{-1} @ 4178 \mathrm{MeV}$

Fits To MM^{2} of Semileptonic Candidates

Decay	$\eta^{(\prime)}$ decay	$\epsilon_{\gamma\left(\pi^{0}\right) \text { SL }}(\%)$	$N_{\mathrm{DT}}^{\text {tot }}$	$\mathcal{B}_{\mathrm{SL}}(\%)$
$\eta e^{+} \nu_{e}$	$\gamma \gamma$	41.11 ± 0.27	1834 ± 47	$2.32 \pm 0.06 \pm 0.06$
	$\pi^{0} \pi^{+} \pi^{-}$	16.06 ± 0.31		
$\eta^{\prime} e^{+} \nu_{e}$	$\eta \pi^{+} \pi^{-}$	14.07 ± 0.10	202 ± 22	$0.82 \pm 0.07 \pm 0.03$
	$\gamma \rho^{0}$	18.98 ± 0.10		

- The blue curves are total fits:
- Signal shape: MC simulated shape convolved with Gaussian
- Black dotted-dashed curve is the fitted background from $D_{s}^{+} \rightarrow \phi e^{+} v_{e}$: MC simulated shape
- Red dotted curve are fitted combinatorial background in signal side: MC simulated shape
- Constraint fit: The branching fractions of $D_{s}^{+} \rightarrow \boldsymbol{\eta} \boldsymbol{e}^{+} \boldsymbol{v}_{\boldsymbol{e}}$ or $D_{s}^{+} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{e}^{+} \boldsymbol{v}_{\boldsymbol{e}}$ for two different $\boldsymbol{\eta}^{(\prime)}$ subdecays are constrained to be same

Comparisons Of Branching Fractions

Fits to partial decay rates and projections on form factors

- Partial decay rates are fitted simultaneously by two $\boldsymbol{\eta} / \boldsymbol{\eta}^{\prime}$ subdecays
- Based on the result extracted with the series 2 Parameters, we determine $\left|V_{c s}\right|$ and $\boldsymbol{f}_{+}^{\eta^{(1)}}(0)$
Nominal result

Case	Simple pole			Modified pole			Series 2 Par.		
	$f_{+}^{\eta^{(\prime)}}(0)\left\|V_{c s}\right\|$	$M_{\text {pole }}$	χ^{2} / NDOF	$f_{+}^{\eta^{(\prime)}}(0)\left\|V_{c s}\right\|$	α	χ^{2} / NDOF	$f_{+}^{\eta^{(\prime)}}(0)\left\|V_{c s}\right\|$	r_{1}	χ^{2} / NDOF
$\overline{\eta e^{+} \nu_{e}}$	0.450(5)(3)	3.77(8)(5)	12.2/14	$0.445(5)(3)$	0.30(4)(3)	11.4/14	0.446(5)(4)	$-2.2(2)(1)$	11.5/14
$\eta^{\prime} e^{+} \nu_{e}$	0.494(45)(10)	1.88 (54)(5)	1.8/4	$0.481(44)(10)$	1.62(91)(11)	1.8/4	$0.477(49)(11)$	$-13.1(76)(11)$	1.9/4

Uncertainties on the least significant digits are shown in parentheses, where the first (second) uncertainties are statistical (systematic)

Comparisons of form factors

Taking $\left|V_{c s}\right|$ CKMfitter and $\boldsymbol{f}_{+}^{\boldsymbol{\eta}^{(1)}}(0)\left|V_{c s}\right|$ extracted with the series 2 Parameters as input, we obtain

$$
f_{+}^{\eta}(0)=0.458 \pm 0.005_{\text {stat }} \pm 0.004_{\text {syst }} \quad f_{+}^{\eta^{\prime}}(0)=0.490 \pm 0.050_{\text {stat }} \pm 0.011_{\text {syst }}
$$

Comparison of $\left|V_{c s}\right|$

Only reported one uncertainty, but include both statistical and systematic

Comparison of mixing angle

Paper only reported one uncertainty, but include both statistical and systematic

Combining the branching fractions measured in this work and $\mathrm{B}\left[D^{+} \rightarrow\right.$ $\left.\eta e^{+} v_{e}\right]=$ $(10.74 \pm 0.81 \pm 0.51) \times$ $10^{-4}, \mathrm{~B}\left[D^{+} \rightarrow \eta^{\prime} e^{+} v_{e}\right]=$ $(1.91 \pm 0.51 \pm 0.13) \times$ 10^{-4} (BESIII Phys. Rev. D 97, 092009 (2018)) into

LHCb JHEP 1501024 (Gluon excluded)	$B_{(s)} \rightarrow / /{ }^{(1)}$	43.5さ1.4			
KLOE PLB 648267 (Gluon included)	$\phi \rightarrow \eta^{\prime \prime} \gamma$	39.7 70.7			
KLOE PLB 648267 (Gluon excluded)	$\phi \rightarrow n^{\prime \prime} \gamma$	41.30.3 ${ }^{\text {a }}$. 9			
CLEO PRD $85 / 3016$ BESIII preliminary	$D_{(s)}^{+} \rightarrow n^{n} e^{+} v_{\text {e }}$ $D_{(s)}^{+} \rightarrow \eta^{n} e^{+} v_{e}$				
$26 \quad 28 \quad 30$	$32 \underset{\phi_{P}}{34}(\mathrm{~d}$	$\begin{gathered} 36 \\ \text { egree) } \end{gathered} 38$	40	42	44

$$
\frac{\Gamma\left(D_{s}^{+} \rightarrow \eta^{\prime} e^{+} \nu\right) / \Gamma\left(D_{s}^{+} \rightarrow \eta e^{+} \nu\right)}{\Gamma\left(D^{+} \rightarrow \eta^{\prime} e^{+} \nu\right) / \Gamma\left(D^{+} \rightarrow \eta e^{+} \nu\right)} \simeq \cot ^{4} \phi_{P}
$$

Rare Semileptonic Decay of D

$D^{+(0)} \rightarrow a_{0}(980)^{0(-)} e^{+} v_{e}$

- Study of the nature of light scalar $a_{0}(980)$ and $f_{0}(980)$ is one of the central problems of nonperturbative QCD
- This study are important for understanding the way that chiral symmetry is realized in the low-energy region and confinement physics
- Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system
- Improve understanding of classification of light scalar mesons

[ud][iä]
- $R \equiv \frac{B\left(D^{+} \rightarrow f_{0} \ell^{+} v\right)+B\left(D^{+} \rightarrow \sigma \ell^{+} v\right)}{B\left(D^{+} \rightarrow a_{0} \ell^{+} v\right)}$

$D^{+(0)} \rightarrow a_{0}(980)^{0(-)} e^{+} v_{e}$

About 2.2 million tagged \bar{D}^{0} mesons

About 1.5 million tagged D^{-}mesons

$$
\begin{aligned}
5.4 \sigma B\left(D^{0}\right. & \left.\rightarrow a_{0}(980)^{-} e^{+} v_{e}\right) \times B\left(a_{0}(980)^{-} \rightarrow \eta \pi^{-}\right) \\
& =\left(1.33_{-0.29}^{+0.33} \pm 0.09\right) \times 10^{-4} \\
2.9 \sigma B\left(D^{+}\right. & \left.\rightarrow a_{0}(980)^{0} e^{+} v_{e}\right) \times B\left(a_{0}(980)^{0} \rightarrow \eta \pi^{0}\right) \\
& =\left(1.66_{-0.66}^{+0.81} \pm 0.11\right) \times 10^{-4}
\end{aligned}
$$

$$
\begin{gathered}
B\left(D^{+} \rightarrow a_{0}(980)^{0} e^{+} v_{e}\right) \times B\left(a_{0}(980)^{0} \rightarrow \eta \pi^{0}\right) \\
<3.0 \times 10^{-4}
\end{gathered}
$$

$D^{+} \rightarrow \gamma e^{+} v_{e}$

- Not subject to the helicity suppression rule due to the presence of a radiative photon.
- Nonperturbative strong interaction effects in theoretical calculations is relatively simple without final-state

$D^{+} \rightarrow \boldsymbol{\gamma}^{+} \boldsymbol{v}_{e}$

Source	Relative uncertainty (\%)
Signal MC model	3.5
e^{+}tracking	0.5
e^{+}PID R	0.5
γ reconsiraction	1.0
$\mathrm{~L}^{2}$ teral moment	4.4
$\pi^{0} e^{+} \nu_{e}$ backgrounds	2.7^{a}

$$
\mathrm{B}\left(\mathrm{D}^{+} \rightarrow \gamma \mathrm{e}^{+} v_{\mathrm{e}}\right)<3.0 \times 10^{-5} @ 90 \% \mathrm{C} . \mathrm{L} . .
$$

Approach to the factorization method prediction: 1.92×10^{-5} (Nucl. Phys. B914, 301 (2017).)

$\mathrm{D}^{+} \rightarrow \mathrm{D}^{0} \mathrm{e}^{+} v_{\mathrm{e}}$

- In the rare decay processes of
$\mathrm{D}^{+} \rightarrow \mathrm{D}^{0} \mathrm{e}^{+} v_{\mathrm{e}}$, the heavy-quark flavors (c) remain unchanged, and the weak decays are managed by the light-quark sectors.
- Applying the $\operatorname{SU}(3)$ symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation and its theoretical value is 2.78×10^{-13} [EPJC, 59:841-845(2009)].

$D^{+} \rightarrow D^{0} e^{+} v_{e}$

Source	$D^{0} \rightarrow K^{-} \pi^{+} D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-} D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$		
Tracking	2.0	4.0	2.0
PID	2.0	4.0	2.0
Quoted branching fraction	1.3	2.6	3.6
π^{0} reconstruction	-	-	2.0
Summation of Signal side	3.1	6.2	5.0
Signal side		3.8	
Background estimation		11.5	
MC statistics		0.5	
$M_{\text {BC }}$ fit (ST)		0.5	
Probability requirement		2.6	
2D fit	2.9		
Total	12.7		

Two dimensional fit

$$
B\left(D^{+} \rightarrow D^{0} e^{+} v_{e}\right)<1.0 \times 10^{-4} @ 90 \% C . L .
$$

Summary

- With $2.93,3.19 \mathrm{fb}^{-1}$ data taken at $3.773,4.178 \mathrm{GeV}, \mathrm{BESIII}$ have studied dynamics of $D_{s}^{+} \rightarrow \eta^{(\prime)} e^{+} v_{e}$, and search for $D^{+(0)} \rightarrow$ $a^{0}(980)^{0(-)} e^{+} v_{e}, \gamma e^{+} v_{e}$ and $D^{0} e^{+} v_{e}$
- First measurement of form factor $f_{+}^{\eta^{(\prime)}}(0)$ helps to tune the LQCD calculation
- Determination of quark mixing matrix element $\left|V_{C S}\right|$ and $\eta-\eta^{\prime}$ mixing angle ϕ_{P} provide complementary result
- First measurement of branching fraction $\mathrm{B}\left(D^{+(0)} \rightarrow a^{0}(980)^{0(-)} e^{+} v_{e}\right)$ opens one more interest page in investigation of the nature of puzzling $a^{0}(980)$ states.

