

Charmed Meson Semi-leptonic Decays At BESIII

CHEP2018, Shanghai

NAT

Outline

- BESIII detector
 - Charm meson semileptonic decay
 - $D_s^+
 ightarrow \eta^{(\prime)} \ e^+ \nu_e$ decays
 - Rare semileptonic decays of D
 - $D^+ \rightarrow D^0 e^+ \nu_e$ decay
 - $D^+ \rightarrow \gamma e^+ \nu_e$ decay
 - $D^{+(0)} \rightarrow a^0 (980)^{0(-)} e^+ v_e$ decays
 - Summary

CHEP2018, Shanghai

BESIII Detector

Magnet:1T Super conducting

$D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$

 ν_e

 \succ η-η' mixing angle

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\phi_P & -\sin\phi_P \\ \sin\phi_P & \cos\phi_P \end{pmatrix} \begin{pmatrix} |\eta_q\rangle \\ |\eta_s\rangle \end{pmatrix}$$

$$\frac{\Gamma(D_s^+ \to \eta' e^+ \nu) / \Gamma(D_s^+ \to \eta e^+ \nu)}{\Gamma(D^+ \to \eta' e^+ \nu) / \Gamma(D^+ \to \eta e^+ \nu)} \simeq \cot^4 \phi_{\perp}$$

Differential partial widths

$$\Gamma(D_s^+ \to \eta^{(\prime)} e^+ v_e) = \frac{G_f^2}{24\pi^3} |V_{cs}|^2 |\vec{p}_{\eta^{(\prime)}}|^3 |f_+^{\eta^{(\prime)}}(q^2)|^2 dq^2$$

Simple pole

 $f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - \frac{q^{2}}{M^{2}}} f_{+}^{\eta(\prime)}(0) |V_{cs}|$

Modified pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - \frac{q^{2}}{M_{pole}^{2}})(1 - \alpha \frac{q^{2}}{M_{pole}^{2}})}$$

Series expansion

$$F_{+}(t) = rac{1}{P(t)\Phi(t,t_0)}a_0(t_0)(1+\sum_{i=1}^{\infty}r_k(t_0)[z(t,t_0)]^k)$$

• Measurements of $f_{+}^{D_{S} \rightarrow \eta^{(\prime)}}(0)$ will be crucial to calibrate the theoretical calculations

- Extraction of $|V_{cs}|$ provides complementary data to test the unitarity of the CKM matrix
- The ratio of $B[D_s^+ \to \eta e^+ \nu_e]/B[D_s^+ \to \eta' e^+ \nu_e]$ helps to determine $\eta \eta'$ mixing angle (ϕ_P)

Analysis Technique

Single tag yield:

$$\mathbf{N}_{\mathrm{ST}}^{i} = 2 \times N_{\mathrm{D}_{\mathrm{S}}^{*+}\mathrm{D}_{\mathrm{S}}^{-}} \times B_{\mathrm{ST}}^{i} \times \epsilon_{\mathrm{ST}}^{i}$$

Double tag yield:

 $N_{\rm DT}^{i} = 2 \times N_{\rm D_{S}^{*+}D_{S}^{-}} \times B_{\rm ST}^{i} \times B_{\rm SL} \times \epsilon_{\rm STvs.SL}^{i}$

Branching fraction:

$$B_{\rm SL} = \frac{N_{\rm DT}}{N_{\rm ST}^{\rm tot} \times \overline{\epsilon}_{\rm SL}}$$
, $N_{\rm ST}^{\rm tot} = \sum_i N_{\rm ST}^i$

Average efficiency:

$$\bar{\epsilon}_{\rm SL} = \sum_{i=1}^{N} (N_{\rm ST}^{i} \times \epsilon_{\rm STvs.SL}^{i} / \epsilon_{\rm ST}^{i}) / \sum_{i=1}^{N} N_{\rm ST}^{i}$$

6

Single Tag D_s^-

- The blue curves are total fits: signal MC shape convoluted Gaussian + polynomial function
- The red dotted curves are the fitted combinatorial backgrounds: polynomial function

$$e^+e^- \to D_s^{*+}D_s^-$$
, $D_s^{*+} \to (\gamma/\pi^0)D_s^+$ +c.c.

 395142 ± 1923 tagged D_s mesons with 3.2 fb^{-1} @4178 MeV

7

Fits To MM² of Semileptonic Candidates

- The blue curves are total fits:
- Signal shape: MC simulated shape convolved with Gaussian
- Black dotted-dashed curve is the fitted background from $D_s^+ o \phi e^+ v_e$: MC simulated shape
- Red dotted curve are fitted combinatorial background in signal side: MC simulated shape
- Constraint fit: The branching fractions of $D_s^+
 ightarrow \eta e^+ \nu_e$ or $D_s^+
 ightarrow \eta' e^+ \nu_e$ for two different $\eta^{(\prime)}$ subdecays are constrained to be same

8

Comparisons Of Branching Fractions

9

Fits to partial decay rates and projections on form factors

Case	Simple pole			Modified pole			Series 2 Par.		
	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	$M_{\rm pole}$	χ^2/NDOF	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	α	χ^2/NDOF	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $	r_1	χ^2/NDOF
$\eta e^+ \nu_e$	0.450(5)(3)	3.77(8)(5)	12.2/14	0.445(5)(3)	0.30(4)(3)	11.4/14	0.446(5)(4)	-2.2(2)(1)	11.5/14
$\eta' e^+ \nu_e$	0.494(45)(10)	1.88(54)(5)	1.8/4	0.481(44)(10)	1.62(91)(11)	1.8/4	0.477(49)(11)	-13.1(76)(11)	1.9/4

10

Uncertainties on the least significant digits are shown in parentheses, where the first (second) uncertainties are statistical (systematic)

Comparisons of form factors

Taking $|V_{cs}|$ CKMfitter and $f_{+}^{\eta^{(\prime)}}(0) |V_{cs}|$ extracted with the series 2 Parameters as input, we obtain $f_{+}^{\eta}(0) = 0.458 \pm 0.005_{stat} \pm 0.004_{syst}$ $f_{+}^{\eta^{\prime}}(0) = 0.490 \pm 0.050_{stat} \pm 0.011_{syst}$

No systematic uncertainty is considered

11

Comparison of $|V_{cs}|$

Comparison of mixing angle

Rare Semileptonic Decay of D

14

 $D^{+(0)} \rightarrow a_0 (980)^{0(-)} e^+ \nu_{\rho}$

- Study of the nature of light scalar $a_0(980)$ and $f_0(980)$ is one of the central problems of nonperturbative QCD
- This study are important for understanding the way that chiral symmetry is realized in the low-energy region and confinement physics
- Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system
- Improve understanding of classification of light scalar mesons

•
$$R \equiv \frac{B(D^+ \to f_0 \ell^+ \nu) + B(D^+ \to \sigma \ell^+ \nu)}{B(D^+ \to a_0 \ell^+ \nu)}$$

CHEP2018, Shanghai

 $D^{+(0)} \rightarrow a_0 (980)^{0(-)} e^+ \nu_e$

 $D^+ \rightarrow \gamma e^+ \nu_e$

- Not subject to the helicity suppression rule due to the presence of a radiative photon.
- Nonperturbative strong interaction effects in theoretical calculations is relatively simple without final-state hadron
- Long-distance contribution is considered via the vector meson dominance model and the decay rate may be enhanced significantly

17

$D^+ \rightarrow \gamma e^+ \nu_e$

CHEP2018, Shanghai

Source	Relative uncertainty (%)
Signal MC model	3.5
e^+ tracking	0.5
e ⁺ PID	0.5
γ reconstruction	1.0
Lateral moment	4.4
$\pi^0 e^+ \nu_e$ backgrounds	2.7 ^a

B(D⁺→γe⁺ν_e)<3.0 ×10⁻⁵ @ 90%C.L..

Approach to the factorization method prediction: 1.92×10^{-5} (Nucl. Phys. B914, 301 (2017).)

 $D^+ \rightarrow D^0 e^+ V_a$

- In the rare decay processes of D⁺→D⁰e⁺v_e, the heavy-quark flavors (c) remain unchanged, and the weak decays are managed by the light-quark sectors.
- Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation and its theoretical value is 2.78× 10⁻¹³ [EPJC, 59:841-845(2009)].
- Measuring this decay may share light on testing the SM predictions for the rare semileptonic decays.

Source	$D^0 \to K^- \pi^+$	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$D^0 \to K^- \pi^+ \pi^0$
Tracking	2.0	4.0	2.0
PID	2.0	4.0	2.0
Quoted branching fraction	1.3	2.6	3.6
π^0 reconstruction	-	-	2.0
Summation of Signal side	3.1	6.2	5.0
Signal side		3.8	
Background estimation		11.5	
MC statistics		0.5	
$M_{\rm BC}$ fit (ST)		0.5	
Probability requirement		2.6	
2D fit		2.9	
Total		12.7	

Two dimensional fit

$B(D^+ \rightarrow D^0 e^+ v_e) < 1.0 \times 10^{-4} @ 90\%$ C.L.

Summary

- With 2.93, 3.19 fb⁻¹ data taken at 3.773, 4.178 GeV, BESIII have studied dynamics of $D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$, and search for $D^{+(0)} \rightarrow a^0 (980)^{0(-)} e^+ \nu_e$, $\gamma e^+ \nu_e$ and $D^0 e^+ \nu_e$
 - First measurement of form factor $f_{+}^{\eta^{(\prime)}}(0)$ helps to tune the LQCD calculation
 - Determination of quark mixing matrix element $|V_{cs}|$ and $\eta \eta'$ mixing angle ϕ_P provide complementary result
 - First measurement of branching fraction $B(D^{+(0)} \rightarrow a^0(980)^{0(-)}e^+\nu_e)$ opens one more interest page in investigation of the nature of puzzling $a^0(980)$ states.