Precision measurements of $\mathcal{B}(D^+_{(s)} \to \ell^+ \nu_{\ell})$, $\mathcal{B}(D \to \bar{K}\mu^+\nu_{\mu})$, $\mathcal{B}(D \to \pi\mu^+\nu_{\mu})$ and LFU test at BESIII

Sifan Zhang on behalf of the BESIII collaboration

NJU, IHEP

June 22, 2018

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{\ell})$

June 22, 2018 1 / 23

2 Data samples and Analysis method

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{\ell})$

Leptonic decays as ideal places to study strong and weak interactions

pure leptonic decays quark weak function with D unknown $\rightarrow F_{\mu} = f_D(p_D^2)p_{D\mu}$

 $\begin{array}{c} \text{semileptonic decays} \\ \text{mesons can not be treated as point particles} \\ \rightarrow H_{\mu} = f_{+}(q^{2})(p_{D} + p_{P})_{\mu} + f_{-}(q^{2})(p_{D} - p_{P})_{\mu}, \\ (q = p_{D} - p_{P}) \end{array}$

Meanwhile, the quark weak interaction eigenstates are the mixing of flavor eigenstates described by the CKM matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

We have $\Gamma(D \to \ell \nu_{\ell}) = \frac{G_F^2}{8\pi} (|V_{cs(d)}| f_D)^2 m_{\ell}^2 m_D \left(1 - \frac{m_{\ell}^2}{m_{D_s}^2}\right)^2$ for pure leptonic decays,
 $\frac{d\Gamma(D \to P\ell\nu_{\ell})}{d\Gamma} = \frac{G_F^2}{8\pi} (|V_{cs(d)}| f_D)^2 m_{\ell}^2 m_D \left(1 - \frac{m_{\ell}^2}{m_{D_s}^2}\right)^2$ for pure leptonic decays,

 $\frac{d\Gamma(D \to P\ell\nu_{\ell})}{dq^2} = \frac{G_F^2}{24\pi^3} (|V_{cs(d)}|f_+(q^2))^2 |\vec{p}_P|^3 + O(m_{\ell}^2) \text{ for semileptonic decays to pesudoscalar mesons.}$

Leptonic decays as a testbed for SM

Some theoretical calculations for decay constants and form factors

Methods	$f_{D} + {\rm MeV}$	$f_{D_s^+}$ MeV	$f_+^{D \to K}(0)$	$f_+^{D \to \pi}(0)$
Lattice $(MILC)^1$	$212.6(0.4)^{(+1.0)}_{(-1.2)}$	$249.0(0.3)^{(+1.1)}_{(-1.5)}$	0.73(3)(7)	0.64(3)(6)
Lattice (HPQCD) ²	208.3(1.0)(3.3)	248.0(2.5)	0.747(11)(15)	0.666(20)(21)
QCD Sum Rules ³	206.2(7.3)(5.1)	245.3(15.7)(4.5)	$0.75^{(+11)}_{(-8)}$	$0.67^{(+10)}_{-(7)}$
	203 9(4 7)	257.7(4.1)	$0.739(4)$ in D^{0} decays	$0.638(12)$ in D^0 decays
100	20010(111)	20111(111)	$0.739(11)$ in D^+ decays	$0.625(11)$ in D^+ decays

Precision of D meson decay constants in experiment need to be improved to test theoretical calculations.

PDG average for $|V_{cs(d)}|$ in experiment: $|V_{cd}| = 0.218 \pm 0.004$ and $|V_{cs}| = 0.997 \pm 0.017$ CKM matrix unitarity test:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994 \pm 0.0005$ $|V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 0.9967 \pm 0.0018$

 $\frac{|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.043 \pm 0.034}{|V_{us}|^2 + |V_{cs}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.046 \pm 0.034}$ Precison of $|V_{cs}|$ needs to be improved for more accurate unitarity test.

²PRD86(2012)054510, PRD82(2010)114504, PRD82(2010)114505, PRD82(2010)114506

³PLB701(2011)82, PRD80(2009)114005

 4 using $|V_{cs(d)}|$ from CKMFitter

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{s})$

¹PRD90(2014)074509, PRL94(2005)011601

Leptonic decays as a way to probe new physics

In SM, the weak leptonic current is simply $L^{\mu}=\bar{u}\gamma^{\mu}(1-\gamma^5)v$

For leptonic process involving different generation of leptons, the only difference in their decay rates is the lepton mass and their ratio can be precisely determined. for example:

$$\frac{\Gamma(D_s^+ \to \tau^+ \nu_\tau)}{\Gamma(D_s^+ \to \mu^+ \nu_\mu)} = 9.74 \qquad \qquad \frac{\Gamma(D \to \bar{K}\mu^+ \nu_\mu)}{\Gamma(D \to \bar{K}e^+ \nu_e)} \sim 0.97$$

However, experiments in B meson semileptonic decays ($\bar{B} \rightarrow D^*(D) \tau^- \bar{\nu}_{\tau}{}^5$,

 $\bar{B} \to K^*(K)\ell^+\ell^{-6}$) in BaBar, LHCb and Belle show evidence of lepton universality violation.

These suggest new physics mechanisms with different coupling strengths to different generation of leptons.

Status of $D \to \bar{K}(\pi) \ell^+ \nu_\ell$ and $D^+_{(s)} \to \ell^+ \nu_\ell$

Decay	Other experiments (%)	BESIII (%)
$\mathcal{B}(D^0 \to K^- e^+ \nu_e)$	3.55 ± 0.05	$3.505 \pm 0.014 \pm 0.033$
$\mathcal{B}(D^0 \to K^- \mu^+ \nu_\mu)$	3.31 ± 0.13	
$\mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e)$	8.83 ± 0.22	8.70 ± 0.12
$\mathcal{B}(D^+ \to \bar{K}^0 \mu^+ \nu_\mu)$	9.4 ± 0.8	
$\mathcal{B}(D^0 \to \pi^- e^+ \nu_e)$	0.289 ± 0.008	$0.295 \pm 0.004 \pm 0.003$
$\mathcal{B}(D^0 o \pi^- \mu^+ u_\mu)$	2.37 ± 0.24	
$\mathcal{B}(D^+ \to \pi^0 e^+ \nu_e)$	0.405 ± 0.018	$0.363 \pm 0.008 \pm 0.005$
$\mathcal{B}(D^+ o \pi^0 \mu^+ \nu_\mu)$	Not measured	

- Previous BESIII measurements have significantly improve the precison of the electron modes.
- Further study on the muon modes needed for precise LFU test.

Decay	$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$ (%)	$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$ (%)
Other experiments	0.556 ± 0.025	5.55 ± 0.24
Decay	$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$ (%)	$\mathcal{B}(D^+ \to \tau^+ \nu_\tau)$ (%)
Other experiments	0.0382 ± 0.0033	< 0.12

The precision can be improved by the BESIII data.

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o\ell^+
u_i)$

Image: A math a math

The view of BEPCII

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{\ell})$

June 22, 2018 7 / 23

The BESIII detector

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{s})$

Data samples and Analysis method

BESIII has the largest $D\bar{D}$ samples around threshold.

At center-mass energy near threshold, D mesons are produced in pair, which allows us to first tag a D meson (the Single Tagged D meson) and then looking for the leptonic decays in the remaining tracks (called Double Tag method)

Branching fraction of signal decay is calculated by

$$\begin{split} N_{\rm ST}^{i} &= 2N_{D\bar{D}}\mathcal{B}_{\rm ST}^{i}\epsilon_{\rm ST}^{i} \\ N_{\rm DT}^{i} &= 2N_{D\bar{D}}\mathcal{B}_{\rm ST}^{i}\mathcal{B}_{\rm sig} \\ \mathcal{B}_{\rm sig} &= \frac{N_{\rm DT}^{\rm tot}}{N_{\rm ST}^{\rm tot}\epsilon_{\rm sig}} \\ \bar{\epsilon}_{\rm sig} &= \sum (N_{\rm ST}^{i}\epsilon_{\rm ST,sig}^{i}/\epsilon_{\rm ST}^{i})/N_{\rm ST}^{\rm tot} \end{split}$$

The number of signal events is determined by examining the kinematic variables of the missing neutrino

$$U_{\rm miss} = E_{\rm miss} - |\vec{p}|_{\rm miss}$$
$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\vec{p}|_{\rm miss}^2$$

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of $\mathcal{B}(D^+_{(s)} o \ell^+
u_{\ell})$

June 22, 2018 9 / 23

Number of ST D mesons

In total, about 2.5×10^6 ST D^0 , 1.5×10^6 ST D^+ and 3.9×10^5 ST D_s^+ are reconstructed.

Analysis of $D_s^+ \rightarrow \mu^+ \nu_\mu$ at 4.009 GeV

Published at PRD94(2016)072004. An overall total of $15127\pm321~{\rm ST}~D_s^-$ mesons are reconstructed.

$$\tau^+$$
 reconstructed using $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$.

 $\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu}) = (0.517 \pm 0.075 \pm 0.021)\%$ $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = (3.28 \pm 1.83 \pm 0.37)\%$

June 22, 2018 11 / 23

ヨト・イヨト

Analysis of $D_s^+ \rightarrow \mu^+ \nu_\mu$ at 4.178 GeV

 $f_{D_s^+}|V_{cs}| = 242.5 \pm 3.5_{\text{stat.}} \pm 3.7_{\text{syst.}}$

- Lower background level compared to CLEOc with MUC information
- The most precise measurement to date $\frac{\Gamma(D_s^+ \to \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})} = 10.19 \pm 0.52$

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{s})$

- Published at PRD89(2014)051104.
- 1703054 ± 3405 ST D^- mesons reconstructed using nine modes.
- MUC information used to suppress backgrounds.

$$\mathcal{B}(D^+ \to \mu^+ \nu_\mu) = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$$

 $f_{D^+} |V_{cd}| = (45.75 \pm 1.20 \pm 0.39) \text{ MeV}$

Analysis of $D^+ \rightarrow \tau^+ \nu_{\tau}$

First evidence with 4σ statistical significance.

$$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau}) = (1.20 \pm 0.24) \times 10^{-3}$$

$$\frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 3.21 \pm 0.64$$

SM prediction 2.66 ± 0.01 .

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of $\mathcal{B}(D^+_{(s)} o \ell^+
u_{(s)})$

June 22, 2018 14 / 23

Analysis of $D^0 \to K^- \mu^+ \nu_\mu$

High order term in the decay rate concerning lepton mass is considered.

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_{\ell})$

Analysis of $D^0 \to K^- \mu^+ \nu_\mu$

Using two parameter expansion parametrization for $f_{+}^{D \rightarrow K}(q^2)$ (PLB633(2006)61)

In the fit, $f_-(q^2)/f_+(q^2)$ is assumed to be independent of q^2

$$f_{+}^{D \to K}(0)|V_{cs}| = 0.7148 \pm 0.0038_{\text{stat.}} \pm 0.0029_{\text{syst.}}$$

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of $\mathcal{B}(D^+_{(s)} o \ell^+
u_{\ell})$

Analysis of $D^0 \to K^- \mu^+ \nu_\mu$

$$R_{\mu/e} = \frac{\Gamma(D^0 \to K^- \mu^+ \nu_\mu)}{\Gamma(D^0 \to K^- e^+ \nu_e)} = 0.978 \pm 0.007 \pm 0.012$$

No deviation large than 2σ from 1 in q^2 interval (0.2, 1.5) GeV²/ c^4 .

June 22, 2018 17 / 23

Published at EPJC76(2016)369

• Simultaneous fit for $\bar{K}^0 \to \pi^+\pi^-$ and $\bar{K}^0 \to \pi^0\pi^0$

$$R_{\mu/e} = \frac{\Gamma(D^+ \to \bar{K}^0 \mu^+ \nu_{\mu})}{\Gamma(D^+ \to \bar{K}^0 e^+ \nu_e)} = 0.988 \pm 0.033$$

Analysis of $D \to \pi \mu^+ \nu_\mu$

SM prediction:

$$\frac{\Gamma(D \to \pi \mu^+ \nu_{\mu})}{\Gamma(D \to \pi e^+ \nu_e)} \sim 0.97$$

Submitted to PRL, arXiv:1802.05492

$$\begin{split} \mathcal{B}(D^0 \to \pi^- \mu^+ \nu_\mu) &= (0.267 \pm 0.007 \pm 0.007)\% \\ \mathcal{B}(D^+ \to \pi^0 \mu^+ \nu_\mu) &= (0.342 \pm 0.011 \pm 0.010)\% \\ R^0_{\rm LU} &= \frac{\Gamma(D^0 \to \pi^- \mu^+ \nu_\mu)}{\Gamma(D^0 \to \pi^- e^+ \nu_e)} = 0.905 \pm 0.027 \pm 0.023 \\ \text{consistent with SM prediction within } 1.9\sigma \end{split}$$

$$R_{\rm LU}^{+} = \frac{\Gamma(D^{+} \to \pi^{0} \mu^{+} \nu_{\mu})}{\Gamma(D^{+} \to \pi^{0} e^{+} \nu_{e})} = 0.942 \pm 0.037 \pm 0.027$$

consistent with SM prediction within 0.6 σ

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of ${\cal B}(D^+_{(s)} o \ell^+
u_i)$

э

I ∃ ►

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of $\mathcal{B}(D^+_{(s)} o \ell^+
u_{(s)})$

June 22, 2018 21 / 23

→

< 67 ▶

Comparison of $|V_{cd}|$

Sifan Zhang on behalf of the BESIII collaboraPrecision measurements of $\mathcal{B}(D^+_{(s)} o \ell^+
u_{(s)})$

June 22, 2018 22 / 23

- Using data taken at BESIII, Precision measurements of $\mathcal{B}(D^+_{(s)} \to \ell^+ \nu_{\ell})$, $\mathcal{B}(D \to \bar{K}\mu^+\nu_{\mu})$ and $\mathcal{B}(D \to \pi\mu^+\nu_{\mu})$ are performed
- CKM matrix elements $|V_{cs(d)}|$, D meson decay constants $f_{D^+_{(s)}}$ and hadronic form factor $f^{D \to K}_+(0)$ are extracted. These results can help to test the unitarity of CKM matrix and calibrate various theoretical calculations
- LFU test are perfromed and no significant deviation from the SM prediction is found at current statistics