

#### Weak Decays of Triply Heavy Baryons

#### Ji Xu Shanghai Jiao Tong University

20.06.2018 Shanghai 中国物理学会高能物理分会第十届全国会员代表大会暨学术年会 In collaboration with Wei Wang Phys.Rev. D97 (2018) no.9, 093007



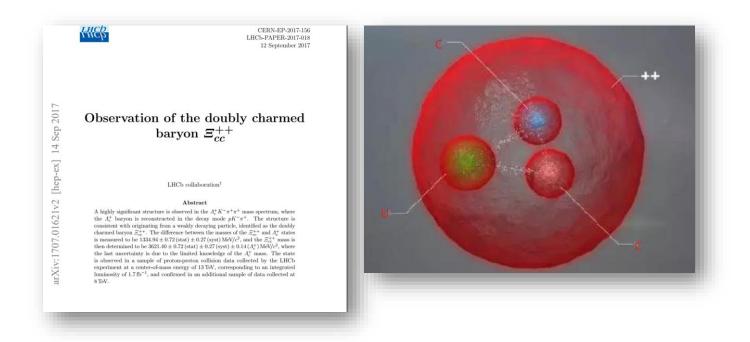


#### Contents:

- Background
- Lifetime and branching ratios
- > SU(3) Analysis
- Golden channels
- > Summary

Background

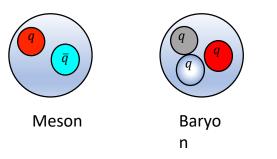
#### Discovery of $\Xi_{cc}^{++}$

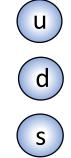


 $m_{\Xi_{cc}^{++}} = (3621.40 \pm 0.72 \pm 0.27 \pm 0.14)$ MeV.

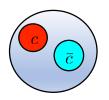
### Quark model

In 1964, Gell-Mann and Zweig proposed a way to build the numerous hadrons out of three fundamental quarks.





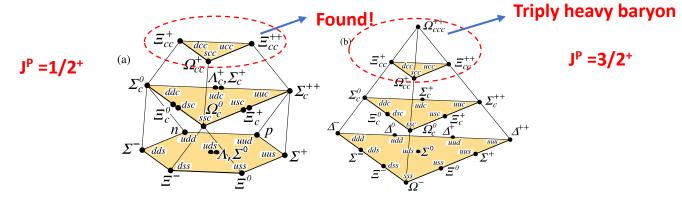
> The 1974 discovery of the J/ $\psi$  (and thus the charm quark) ushered in a series of breakthroughs which are collectively known as the November Revolution.





#### Quark model

For baryons with four flavors u,d,s,c, a 20-plet for JP =1/2+ and JP =3/2+, respectively



Baryons with three heavy quarks:

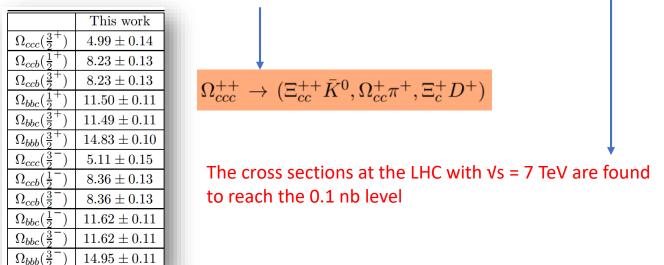
The last missing pieces of the lowest-lying baryon multiplets in quark model !

## Lifetime and branching ratios

> Previous studies of triply heavy baryons concentrated on three facets:

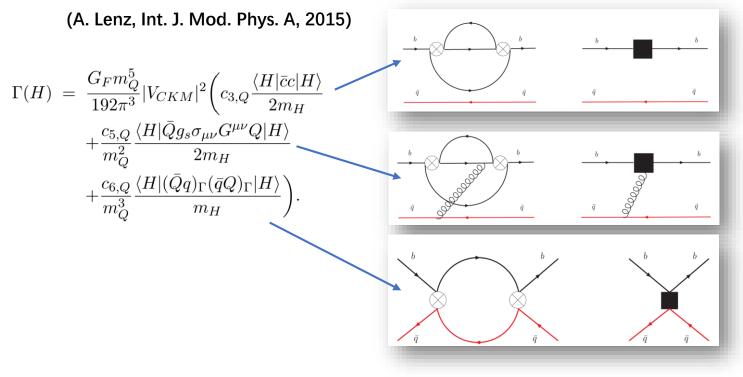
- (1) Spectroscopy: Y. Jia, JHEP (2006); A. P. Martynenko, Phys. Lett. B (2008); Z. G. Wang, Commun. Theor. Phys. (2012).....
- (2) Production: Y. Q. Chen and S. Z. Wu, JHEP 2011; M.A. Gomshi Nobary and R. Sepahvand, Phy.Rev.D(2005);

(3) Decays: C.Q.Geng, Y.K.Hsiao, C.W.Liu and T.H.Tsai, JHEP(2017)



(Z. G. Wang, Commun. Theor. Phys. 2012)

- Lifetimes or the total decay widths are among the most fundamental properties of the involved triply heavy baryons.
- A theoretical tools that describes the decay widths of inclusive decays is heavy quark expansion.
- > The total decay rate is given by matrix elements of operators below:



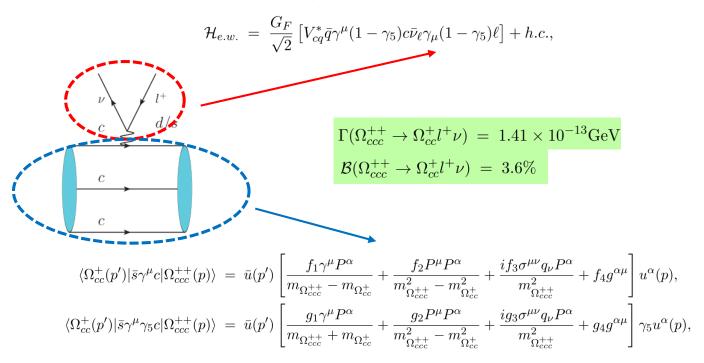
## ▶ C<sub>3,c</sub> = 6.29±0.72 at LO and 11.61±1.55 at NLO. (A. Lenz, Int. J. Mod. Phys. A, 2015)

$$\Gamma(\Omega_{ccc}^{++}) = \begin{cases} (2.18 \pm 0.25) \times 10^{-12} \text{GeV}, \text{ LO} \\ (4.03 \pm 0.54) \times 10^{-12} \text{GeV}, \text{ NLO} \end{cases},$$
$$\tau(\Omega_{ccc}^{++}) = \begin{cases} (302 \pm 35) \times 10^{-15}s, \text{ LO} \\ (164 \pm 22) \times 10^{-15}s, \text{ NLO} \end{cases}.$$

$$\begin{split} \Gamma(\Omega_{bbb}^{-}) &= \begin{cases} (1.47 \pm 0.01) \times 10^{-12} \text{GeV}, \text{ LO} \\ (1.92 \pm 0.02) \times 10^{-12} \text{GeV}, \text{ NLO} \end{cases}, \\ \tau(\Omega_{bbb}^{-}) &= \begin{cases} (0.45 \pm 0.03) \times 10^{-12} s, \text{ LO} \\ (0.34 \pm 0.04) \times 10^{-12} s, \text{ NLO} \end{cases}. \end{split}$$

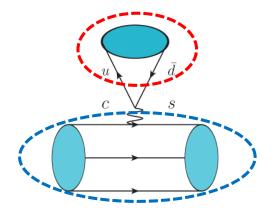
For process:  $\Omega_{ccc}^{++} \rightarrow \Omega_{cc}^{+} \ell^{+} \nu$ , leptonic amplitudes can be calculated in electroweak perturbation theory. While the hadronic matrix element can be parametrized in terms of form factors:

The  $c \to q\bar{\ell}\nu$  transition is induced by the effective electro-weak Hamiltonian:



For process:  $\Omega_{ccc}^{++} \rightarrow \Omega_{cc}^{+} \pi^{+}$ , one may use the factorization approach to predict its decay widths. Using the form factors, we have the decay width:

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+}\pi^{+}) = \frac{\sqrt{\lambda}G_{F}^{2}}{64\pi m_{\Omega_{ccc}^{++}}^{3}} |V_{cs}V_{ud}|^{2} f_{\pi}^{2} \left[ |H_{t,-1/2}^{V,1/2}|^{2} + |H_{t,-1/2}^{A,1/2}|^{2} \right]$$



$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 6.20 \times 10^{-14} \text{GeV}.$$
$$\mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 1.5\%.$$

Some literature shows that  $10^4 - 10^5$  events of triply heavy baryons  $\Omega_{ccc}^{++}$  can be accumulated for 10 fb<sup>-1</sup> integrated luminosity at LHC.

(Y. Q. Chen and S. Z. Wu, JHEP 2011; Wei Wang, Yue-Long Shen, and Cai-Dian Lu, Phys. Rev.D)

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} l^{+} \nu) = 1.41 \times 10^{-13} \text{GeV} \qquad \Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 6.20 \times 10^{-14} \text{GeV}.$$
  
$$\mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} l^{+} \nu) = 3.6\% \qquad \mathcal{B}(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = 1.5\%.$$

Events 
$$(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) \sim (10^4 - 10^5) \times 1.5\% = (150 - 1500)$$

# SU(3) Analysis

SU(3) light flavor symmetry is a powerful tool to analize decays of heavy hadrons.

c

 $m_u {\sim} 2.2 \text{ MeV} \qquad m_d {\sim} 4.7 \text{ MeV} \qquad m_s {\sim} 96 \text{ MeV} \qquad \Lambda_{\text{QCD}} {\sim} 225 \text{ MeV}$ 

$$M_8 = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -2\frac{\eta}{\sqrt{6}} \end{pmatrix}.$$

Triply heavy baryon belongs to SU(3) singlet.

 $\Omega_{ccc}^{++}$   $\Omega_{ccb}^{+}$   $\Omega_{cbb}^{0}$   $\Omega_{bbb}^{-}$ 

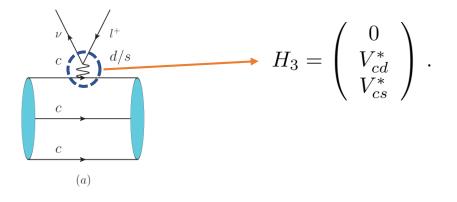
. . . . . .

#### SEMI-LEPTONIC $\Omega_{ccc}^{++}$ DECAY

The  $c \to q\bar{\ell}\nu$  transition is induced by the effective electro-weak Hamiltonian:

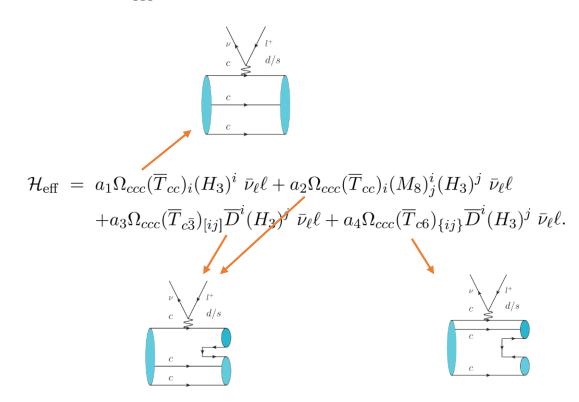
$$\mathcal{H}_{e.w.} = \frac{G_F}{\sqrt{2}} \left[ V_{cq}^* \bar{q} \gamma^\mu (1 - \gamma_5) c \bar{\nu}_\ell \gamma_\mu (1 - \gamma_5) \ell \right] + h.c.,$$

The heavy-to-light quark operators will form an SU(3) triplet , denoted as H3, with the components :



### SEMI-LEPTONIC $\Omega_{ccc}^{++}$ DECAY

At hadron level, the effective Hamiltonian for three-body and four-body semileptonic  $\Omega_{ccc}^{++}$  decays can be constructed as:



#### SEMI-LEPTONIC $\Omega_{ccc}^{++}$ DECAY

| amplitude                                       | channel                                                        | $\operatorname{amplitude}$       | channel                                                           |
|-------------------------------------------------|----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|
| $V_{\ell} = a_3 V_{cd}^*$                       | $\Omega_{ccc}^{++} \to \Lambda_c^+ D^0 \ell^+ \nu_\ell$        | $a_1 V_{cd}^*$                   | $\Omega_{ccc}^{++}\to \Xi_{cc}^+\ell^+\nu_\ell$                   |
| $v_\ell = a_3 V_{cs}^*$                         | $\Omega_{ccc}^{++} \to \Xi_c^+ D^0 \ell^+ \nu_\ell$            | $a_1 V_{cs}^*$                   | $\Omega_{ccc}^{++} \to \Omega_{cc}^+ \ell^+ \nu_\ell$             |
| $v_\ell = a_3 V_{cs}^*$                         | $\Omega_{ccc}^{++} \to \Xi_c^0 D^+ \ell^+ \nu_\ell$            | $a_2 V_{cd}^*$                   | $\Omega_{ccc}^{++}\to \Xi_{cc}^{++}\pi^-\ell^+\nu_\ell$           |
|                                                 | $\Omega_{ccc}^{++} \to \Xi_c^0 D_s^+ \ell^+ \nu_\ell$          | $a_2 V_{cs}^*$                   | $\Omega_{ccc}^{++}\to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell$          |
| $\ell \ell = \frac{a_4 V_{cd}^*}{\sqrt{2}}$     | $\Omega_{ccc}^{++} \to \Sigma_c^+ D^0 \ell^+ \nu_\ell$         | $-\frac{a_2 V_{cd}^*}{\sqrt{2}}$ | $\Omega_{ccc}^{++}\to \Xi_{cc}^+\pi^0\ell^+\nu_\ell$              |
|                                                 | $\Omega_{ccc}^{++} \to \Sigma_c^0 D^+ \ell^+ \nu_\ell$         | $a_2 V_{cs}^*$                   | $\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell$ |
|                                                 | $\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^0 \ell^+ \nu_\ell$     | $\frac{a_2 V_{cd}^*}{\sqrt{6}}$  | $\Omega_{ccc}^{++}\to \Xi_{cc}^+\eta\ell^+\nu_\ell$               |
|                                                 | $\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D^+ \ell^+ \nu_\ell$   | $a_2 V_{cd}^*$                   | $\Omega_{ccc}^{++} \to \Omega_{cc}^+ K^0 \ell^+ \nu_\ell$         |
| $\gamma_{\ell} = \frac{a_4 V_{cd}^*}{\sqrt{2}}$ | $\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D_s^+ \ell^+ \nu_\ell$ | $-\sqrt{\frac{2}{3}}a_2V_{cs}^*$ | $\Omega_{ccc}^{++} \to \Omega_{cc}^+ \eta \ell^+ \nu_\ell$        |
| $v_\ell = a_4 V_{cs}^*$                         | $\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \ell^+ \nu_\ell$       |                                  |                                                                   |
| V                                               | $\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \ell^+$                |                                  |                                                                   |

- The light pseudoscalar mesons can be replaced by their vector counterparts. For instance the  $K^0$  can be replaced by a  $K^{*0}$ , which is reconstructed by the  $K^-\pi^+$  final state.
- Inspired by the experimental data on D meson decays, we can infer that branching fractions for the c → s channels are about a few percents.
- > A number of relations for decay widths can be easily read off from this table:

$$\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell) = \Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell) = \frac{3}{2} \Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^+ \eta \ell^+ \nu_\ell).$$

### NON-LEPTONIC $\Omega_{\mathbf{ccc}}^{++}$ DECAY

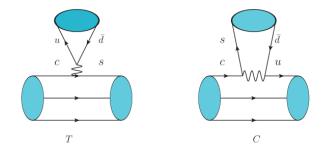
Nonleptonic charm quark decays into light quarks are classified into three groups:

 $c \to s \bar{d} u, \quad c \to u \bar{d} d / \bar{s} s, \quad c \to d \bar{s} u.$ 

These operators transform under the flavor SU(3) symmetry as  $\mathbf{3} \otimes \mathbf{\overline{3}} \otimes \mathbf{3} = \mathbf{3} \oplus \mathbf{3} \oplus \mathbf{\overline{6}} \oplus \mathbf{15}.$ 

> Decays into a doubly-charmed baryon and one light meson

$$\mathcal{H}_{eff} = a_1 \Omega_{ccc} (\overline{T}_{cc})_i (M_8)_j^k (H_{\overline{6}})_k^{ij} + a_2 \Omega_{ccc} (\overline{T}_{cc})_i (M_8)_j^k (H_{15})_k^{ij}.$$

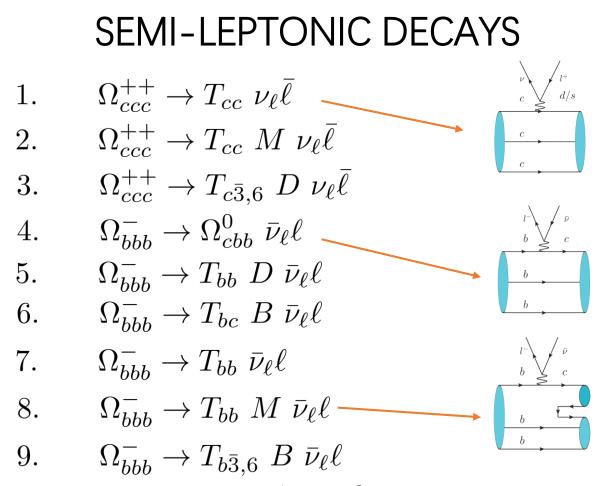


### NON-LEPTONIC $\Omega^{++}_{\mathbf{ccc}}$ DECAY

| channel                                                | amplitude                       | channel                                   | amplitude                                                     |
|--------------------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------------------------------|
| Cabibbo-allowed                                        | channels                        | Singly Cabibbo-suppressed                 | channels                                                      |
| $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0$   | $(a_2 - a_1)V_{ud}V_{cs}^*$     | $\Omega_{ccc}^{++}\to \Xi_{cc}^{++}\pi^0$ | $\frac{(a_2 - a_1)V_{us}V_{cs}^*}{\sqrt{2}}$                  |
| $\Omega_{ccc}^{++}  ightarrow \Omega_{cc}^{+} \pi^{+}$ | $(a_1 + a_2)V_{ud}V_{cs}^*$     | $\Omega_{ccc}^{++}\to \Xi_{cc}^{++}\eta$  | $\sqrt{\frac{3}{2}} \left( a_1 - a_2 \right) V_{us} V_{cs}^*$ |
| Doubly Cabibbo-suppressed                              | channels                        | $\Omega_{ccc}^{++}\to \Xi_{cc}^+\pi^+$    | $(a_1 + a_2) (-V_{us}V_{cs}^*)$                               |
| $\Omega_{ccc}^{++}\to \Xi_{cc}^{++} K^0$               | $(a_1 - a_2) (-V_{us}V_{cd}^*)$ | $\Omega_{ccc}^{++}\to\Omega_{cc}^+K^+$    | $(a_1 + a_2) V_{us} V_{cs}^*$                                 |
| $\Omega_{ccc}^{++}\to \Xi_{cc}^+ K^+$                  | $(a_1 + a_2) V_{us} V_{cd}^*$   |                                           |                                                               |

- > The light pseudoscalar mesons can be replaced by their vector counterparts.
- Some CKM allowed channels are about a few percents.
- > A number of relations for decay widths can be read off from this table:

$$\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \eta) = 3\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \pi^0) \quad \Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{+} \pi^+) = \Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} K^+)$$



Similar semi-leptonic decays of  $\Omega_{ccb}^+$  and  $\Omega_{cbb}^0$  have also been considered.

### NON-LEPTONIC $\Omega_{\mathbf{ccc}}^{++}$ DECAY

1. 
$$\Omega_{ccc}^{++} \to T_{cc} M$$

2. 
$$\Omega_{ccc}^{++} \to T_{cc} \ M \ M$$

3. 
$$\Omega_{ccc}^{++} \to T_{c\bar{3},6} D$$

4. 
$$\Omega_{ccc}^{++} \to T_{c\bar{3},6} \ D \ M$$

#### NON-LEPTONIC $\Omega^-_{\rm bbb}$ DECAY

1. 
$$\Omega_{bbb}^- \to T_{bb} J/\psi$$

2. 
$$\Omega_{bbb}^- \to T_{bb} J/\psi M$$

3. 
$$\Omega_{bbb}^- \to T_{b\bar{3},6} J/\psi B$$

4. 
$$\Omega_{bbb}^{-} \to \Omega_{cbb}^{0} \overline{D}$$

5. 
$$\Omega_{bbb}^{-} \to \Omega_{cbb}^{0} \overline{D} M$$

#### NON-LEPTONIC $\Omega^-_{bbb}$ DECAY

$$6. \qquad \Omega_{bbb}^{-} \to \Omega_{cbb} \ M$$

- 7.  $\Omega_{bbb}^- \to \Omega_{cbb} \ M \ M$
- 8.  $\Omega_{bbb}^- \to T_{bb} D$
- 9.  $\Omega_{bbb}^- \to T_{bb} D M$
- 10.  $\Omega_{bbb}^- \to T_{b\bar{3},6} \ D \ B$
- 11.  $\Omega_{bbb}^- \to T_{bb} \overline{D}$
- 12.  $\Omega_{bbb}^{-} \to T_{bb} \overline{D} M$
- 13.  $\Omega_{bbb}^{-} \to T_{b\bar{3},6} \ \overline{D} \ B$
- 14.  $\Omega_{bbb}^- \to T_{bb} M$
- 15.  $\Omega_{bbb}^- \to T_{bb} \ M \ M$

- 16.  $\Omega_{bbb}^- \to T_{b\bar{3},6} B$
- 17.  $\Omega_{bbb}^- \to T_{b\bar{3},6} \ B \ M$

Similar non-leptonic decays of  $\Omega_{ccb}^+$  and  $\Omega_{cbb}^0$  have also been considered.

## Golden channels

> Based on the above analysis, we first give a collection of the CKM allowed decay channels for the  $\Omega_{ccc}^{++}$ 

| channel                                                    | channel                                                      | channel                                                  | channel                                                           |
|------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|
| $\Omega_{ccc}^{++} \to \Omega_{cc}^+ \ell^+ \nu_\ell$      | $\Omega_{ccc}^{++} \to \Xi_c^{\prime+} D^0 \ell^+ \nu_\ell$  | $\Omega_{ccc}^{++} \to \Xi_c^0 D^+ \ell^+ \nu_\ell$      | $\Omega_{ccc}^{++} \to \Xi_{cc}^+ \overline{K}^0 \ell^+ \nu_\ell$ |
| $\Omega_{ccc}^{++} \to \Xi_c^+ D^0 \ell^+ \nu_\ell$        | $\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D^+ \ell^+ \nu_\ell$ | $\Omega_{ccc}^{++}\to \Xi_{cc}^{++} K^- \ell^+ \nu_\ell$ | $\Omega_{ccc}^{++} \to \Omega_c^0 D_s^+ \ell^+ \nu_\ell$          |
| $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0$       | $\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}$              |                                                          |                                                                   |
| $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} \overline{K}^0 \pi^0$ | $\Omega_{ccc}^{++} \to \Xi_{cc}^+ \pi^+ \overline{K}^0$      | $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \pi^+$          | $\Omega_{ccc}^{++} \to \Omega_{cc}^+ K^+ \overline{K}^0$          |
| $\Omega_{ccc}^{++} \to \Xi_c^+ D^+$                        | $\Omega_{ccc}^{++} \to \Xi_c^{\prime+} D^+$                  |                                                          |                                                                   |
| $\Omega_{ccc}^{++} \to \Lambda_c^+ D^+ \overline{K}^0$     | $\Omega_{ccc}^{++} \to \Xi_c^+ D_s^+ \overline{K}^0$         | $\Omega_{ccc}^{++}\to \Xi_c^+ D^+ \pi^0$                 | $\Omega_{ccc}^{++} \to \Xi_c^0 D^+ \pi^+$                         |
| $\Omega_{ccc}^{++}\to \Xi_c^+ D^0 \pi^+$                   |                                                              |                                                          |                                                                   |
| $\Omega_{ccc}^{++} \to \Sigma_c^{++} D^0 \overline{K}^0$   | $\Omega_{ccc}^{++} \to \Xi_c^{\prime 0} D^+ \pi^+$           | $\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^0 \pi^+$         | $\Omega_{ccc}^{++} \to \Omega_c^0 D^+ K^+$                        |
| $\Omega_{ccc}^{++}\to \Sigma_c^{++}D^+K^-$                 | $\Omega_{ccc}^{++} \to \Xi_c^{\prime+} D_s^+ \overline{K}^0$ | $\Omega_{ccc}^{++}\to \Xi_c^{\prime+} D^+ \pi^0$         | $\Omega_{ccc}^{++}\to\Omega_c^0 D_s^+\pi^+$                       |
| $\Omega_{ccc}^{++} \to \Sigma_c^+ D^+ \overline{K}^0$      |                                                              |                                                          |                                                                   |
|                                                            |                                                              |                                                          |                                                                   |

Nonleptonic  $\Omega_{ccc}^{++}$  decay such as  $\Omega_{ccc}^{++} \to \Xi_{cc}^{++} K^- \pi^+$  might be used to search for  $\Omega_{ccc}^{++}$  especially at LHC, since their branching fractions are sizable, and the final state can be easily to identify. This will make use of the doubly heavy baryon  $\Xi_{cc}^{++}$  which has been just discovered by LHCb. ► Based on the above analysis, we first give a collection of the CKM allowed decay channels for the  $\Omega_{bbb}^{-}$ 

| channel                                                 | channel                                                                        | channel                                                              | channel                                                                               |
|---------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                         |                                                                                | $\Omega_{bbb}^{-} \to \Omega_{bb}^{-} D_s^+ \ell^- \bar{\nu}_{\ell}$ | $\Omega_{bbb}^{-} \to \Omega_{bc}^{0} \overline{B}_{s}^{0} \ell^{-} \bar{\nu}_{\ell}$ |
| $\Omega_{bbb}^{-}\to \Xi_{bb}^{-}D^+\ell^-\bar\nu_\ell$ | $\Omega_{bbb}^{-} \to \Xi_{bc}^{0} \overline{B}^{0} \ell^{-} \bar{\nu}_{\ell}$ |                                                                      |                                                                                       |
| $\Omega_{bbb}^{-}\to\Omega_{bb}^{-}J/\psi$              |                                                                                | $\Omega_{bbb}^{-}\to \Xi_{bb}^{0}K^{-}J/\psi$                        |                                                                                       |
| $\Omega_{bbb}^{-}\to \Xi_{b}^{0}B^{-}J/\psi$            |                                                                                | $\Omega_{bbb}^{-} \to \Xi_{bb}^{-} \overline{K}^0 J/\psi$            | $\Omega_{bbb}^{-} \to \Xi_{b}^{-} \overline{B}^{0} J/\psi$                            |
| $\Omega_{bbb}^{-}\to\Omega_{bbc}^{0}D_{s}^{-}$          | $\Omega_{bbb}^{-} \to \Omega_{bbc}^{0} D^{-} \overline{K}^{0}$                 | $\Omega_{bbb}^{-} \to \Omega_{bbc}^{0} \overline{D}^{0} K^{-}$       |                                                                                       |
| $\Omega_{bbb}^{-}\to\Omega_{bbc}^{0}\pi^{-}$            | $\Omega_{bbb}^{-}\to \Omega_{bbc}^0 K^0 K^-$                                   |                                                                      |                                                                                       |
| $\Omega_{bbb}^{-}\to \Xi_{bb}^{-}D^0$                   | $\Omega_{bbb}^{-}\to \Xi_{bb}^{-}D^{+}\pi^{-}$                                 | $\Omega_{bbb}^{-}\to \Xi_{bb}^{-} D^0 \pi^0$                         | $\Omega_{bbb}^{-}\to\Omega_{bb}^{-}D^0K^0$                                            |
| $\Omega_{bbb}^{-}\to \Lambda_b^0 B^- D^0$               | $\Omega_{bbb}^{-} \to \Sigma_{b}^{-} B^{-} D^{+}$                              | $\Omega_{bbb}^{-}\to \Xi_{b}^{-} \overline{B}_{s}^{0} D^{0}$         | $\Omega_{bbb}^{-}\to \Xi_{b}^{\prime-}B^{-}D_{s}^{+}$                                 |
| $\Omega_{bbb}^{-}\to \Xi_{bb}^0 D^0 \pi^-$              | $\Omega_{bbb}^{-}\to \Sigma_{b}^{-} \overline{B}^{0} D^{0}$                    | $\Omega_{bbb}^{-}\to\Omega_{bb}^{-}D_s^{+}\pi^{-}$                   | $\Omega_{bbb}^{-}\to \Xi_{b}^{\prime-} \overline B{}^{0}_{s} D^{0}$                   |
| $\Omega_{bbb}^{-} \to \Xi_{b}^{-} B^{-} D_{s}^{+}$      | $\Omega_{bbb}^{-} \to \Xi_{bb}^{-} D_s^+ K^-$                                  | $\Omega_{bbb}^{-}\to \Sigma_{b}^{0}B^{-}D^{0}$                       |                                                                                       |
|                                                         |                                                                                |                                                                      |                                                                                       |

For nonleptonic decays of  $\Omega_{bbb}^{-}$ , the largest branching fraction might reach  $10^{-3}$ . Taking into account its daughter decays, we expect the branching fraction for  $\Omega_{bbb}^{-}$  decaying into charmless final state is at most  $10^{-9}$ . Thus the triply bottom baryon can be only observed with a large amount of data in future, such as the high luminosity LHC.

# Summary

#### Summary

- On experimental side, light hadrons with no heavy quark, singly heavy baryons, and doubly heavy baryons have been established, but triply heavy baryons are still missing.
- In this work we study semileptonic and nonleptonic weak decays of triply heavy baryons  $\Omega_{ccc}^{++}$   $\Omega_{ccb}^{+}$   $\Omega_{cbb}^{0}$   $\Omega_{bbb}^{-}$  by using SU(3) flavor symmetry.
- We point out that branching fractions for Cabibbo allowed processes showed below may reach a few percents,

 $\Omega_{ccc}^{++} \to (\Xi_{cc}^{++} \overline{K}^0, \Xi_{cc}^{++} K^- \pi^+, \Omega_{cc}^+ \pi^+, \Xi_c^+ D^+, \Xi_c^\prime D^+, \Lambda_c D^+ \overline{K}^0, \Xi_c^+ D^0 \pi^+, \Xi_c^0 D^+ \pi^+)$ 

➤We suggest our experimental colleagues to perform a search at hadron colliders and the electron and positron collisions in future, which will presumably lead to discoveries of triply heavy baryons and complete the baryon multiplets.





## Thank you !





## Back up

and thus for the decay rate

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[ c_{3,b} \frac{\langle B|\bar{b}b|B\rangle}{2M_B} + \frac{c_{5,b}}{m_b^2} \frac{\langle B|\bar{b}g_s\sigma_{\mu\nu}G^{\mu\nu}b|B\rangle}{2M_B} + \frac{c_{6,b}}{m_b^3} \frac{\langle B|(\bar{b}q)_{\Gamma}(\bar{q}b)_{\Gamma}|B\rangle}{M_B} + \dots \right].$$
(2.52)

The individual contributions in Eq. (2.52) have the following origin and interpretation:

#### A. $\Omega_{ccc}^{++}$

The dimension 6 operators arise from the interaction between the decaying heavy quark and the spectator quarks. For the  $\Omega_{ccc}^{++}$  baryon, such operator do not contribute since two charm quarks can not scatter at leading order. At the lowest order in  $1/m_c$ , the  $\bar{c}c$  operator gives the charm quark number in the  $\Omega_{ccc}^{++}$  baryon:

$$\frac{\langle \Omega_{ccc}^{++} | \bar{c}c | \Omega_{ccc}^{++} \rangle}{2m_{\Omega_{ccc}^{++}}} = 3 + \mathcal{O}(1/m_c).$$
<sup>(7)</sup>

#### A. Semileptonic $\Omega_{ccc}$ decays

The  $c \to q \bar{\ell} \nu$  transition is induced by the effective electro-weak Hamiltonian:

$$\mathcal{H}_{e.w.} = \frac{G_F}{\sqrt{2}} \left[ V_{cq}^* \bar{q} \gamma^\mu (1 - \gamma_5) c \bar{\nu}_\ell \gamma_\mu (1 - \gamma_5) \ell \right] + h.c.,$$

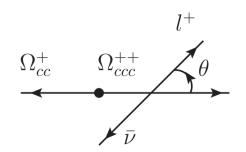


FIG. 2: Kinematics for the  $\Omega_{ccc}^{++} \to \Omega_{cc}^+ l^+ \bar{\nu}$  decay. In the  $\Omega_{ccc}^{++}$  rest frame, the  $\Omega_{cc}^+$  moves on the opposite of the z axis. In the lepton pair  $l^+\bar{\nu}$  rest frame, the  $l^+$  flying direction and the z axis intersect with the polar angle  $\theta$ .

$$\Gamma(\Omega_{ccc}^{++} \to \Xi_{cc}^{+} l^{+} \nu) = 1.29 \times 10^{-14} \text{GeV}.$$
(40)

Masses for triply and doubly heavy baryons are taken from the QCD sum rules calculations [13, 58]:

$$m_{\Omega_{cc}^{++}} = 4.99 \text{GeV}, \quad m_{\Xi_{cc}^{+}} = 3.57 \text{GeV}, \quad m_{\Omega_{cc}^{+}} = 3.71 \text{GeV}.$$
 (41)

$$(T_{10})^{111} = \Delta^{++}, \quad (T_{10})^{112} = (T_{10})^{121} = (T_{10})^{211} = \frac{1}{\sqrt{3}}\Delta^{+},$$

$$(T_{10})^{222} = \Delta^{-}, \quad (T_{10})^{122} = (T_{10})^{212} = (T_{10})^{221} = \frac{1}{\sqrt{3}}\Delta^{0},$$

$$(T_{10})^{113} = (T_{10})^{131} = (T_{10})^{311} = \frac{1}{\sqrt{3}}\Sigma'^{+}, \quad (T_{10})^{223} = (T_{10})^{322} = \frac{1}{\sqrt{3}}\Sigma'^{-},$$

$$(T_{10})^{123} = (T_{10})^{132} = (T_{10})^{213} = (T_{10})^{231} = (T_{10})^{312} = (T_{10})^{321} = \frac{1}{\sqrt{6}}\Sigma'^{0},$$

$$(T_{10})^{133} = (T_{10})^{313} = (T_{10})^{331} = \frac{1}{\sqrt{3}}\Xi'^{0}, \quad (T_{10})^{233} = (T_{10})^{323} = \frac{1}{\sqrt{3}}\Xi'^{-},$$

$$(T_{10})^{333} = \Omega^{-}.$$

$$(17)$$

The octet has the expression:

$$T_8 = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}} \Lambda^0 \end{pmatrix}.$$
 (18)

The triply heavy baryons form an SU(3) singlet, while doubly heavy baryons are an SU(3) triplet:

$$T_{cc} = \begin{pmatrix} \Xi_{cc}^{++}(ccu) \\ \Xi_{cc}^{+}(ccd) \\ \Omega_{cc}^{+}(ccs) \end{pmatrix}, \quad T_{bc} = \begin{pmatrix} \Xi_{bc}^{+}(bcu) \\ \Xi_{bc}^{0}(bcd) \\ \Omega_{bc}^{0}(bcs) \end{pmatrix}, \quad T_{bb} = \begin{pmatrix} \Xi_{bb}^{0}(bbu) \\ \Xi_{bb}^{-}(bbd) \\ \Omega_{bb}^{-}(bbs) \end{pmatrix}.$$
(19)

#### Singly charmed and bottom baryons with two light quarks can form an anti-triplet or sextet. For the anti-triplet and sextet, we have the matrix expression:

$$T_{\mathbf{c}\bar{\mathbf{3}}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}, \quad T_{\mathbf{c}\mathbf{6}} = \begin{pmatrix} \Sigma_c^{++} & \frac{1}{\sqrt{2}}\Sigma_c^+ & \frac{1}{\sqrt{2}}\Xi_c^{++} \\ \frac{1}{\sqrt{2}}\Sigma_c^+ & \Sigma_c^0 & \frac{1}{\sqrt{2}}\Xi_c^{\prime 0} \\ \frac{1}{\sqrt{2}}\Xi_c^{\prime -} & \frac{1}{\sqrt{2}}\Xi_c^{\prime 0} & \Omega_c^0 \end{pmatrix}.$$
 (20)

In the meson sector, a light pseudo-scalar meson is formed by a light quark and one light antiquark. It forms an octet:

$$M_8 = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \overline{K}^0 & -\frac{2\eta}{\sqrt{6}} \end{pmatrix},$$
(21)

while the singlet  $\eta_1$  is not considered. Our analysis is also applicable to light vector mesons and other light mesons. The charmed meson forms an SU(3) anti-triplet:

$$D_i = \left( D^0, \ D^+, \ D_s^+ \right),$$
 (22)

and the anti-charmed meson forms an SU(3) triplet:

$$\overline{D}^{i} = \left( \overline{D}^{0}, \ D^{-}, \ D_{s}^{-} \right).$$
<sup>(23)</sup>

The above two SU(3) triplets are also applicable to the bottom mesons.

In the following we will construct the hadron-level effective Hamiltonian for various decay modes. It is necessary to point out that a hadron in the final state must be created by its anti-particle field. For instance, in order to produce a  $\Xi_{ccu}^{++}$ , one must use the  $\overline{\Xi_{ccu}^{++}}$  in the Hamiltonian, and the doubly heavy baryon anti-triplet is abbreviated as  $\overline{T}_{cc}$ .

Penguin contributions in charm quark decays are highly suppressed, and thus are neglected in our analysis. Tree operators transform under the flavor SU(3) symmetry as  $\mathbf{3} \otimes \mathbf{\overline{3}} \otimes \mathbf{3} = \mathbf{3} \oplus \mathbf{\overline{6}} \oplus \mathbf{15}$ . For charm quark decays, the vector representation  $H_3$  will vanishes as an approximation. For the  $c \to su\bar{d}$  transition, we have

$$(H_{\overline{6}})_{2}^{31} = -(H_{\overline{6}})_{2}^{13} = V_{ud}V_{cs}^{*}, \quad (H_{15})_{2}^{31} = (H_{15})_{2}^{13} = V_{ud}V_{cs}^{*}, \tag{49}$$

while for the doubly Cabibbo suppressed  $c \rightarrow du\bar{s}$  transition, we have

$$(H_{\overline{6}})_3^{21} = -(H_{\overline{6}})_3^{12} = V_{us}V_{cd}^*, \quad (H_{15})_3^{21} = (H_{15})_3^{12} = V_{us}V_{cd}^*.$$

$$(50)$$

CKM matrix elements for  $c \to u\bar{d}d$  and  $c \to u\bar{s}s$  transitions are approximately equal in magnitude but different in sign. Here we take  $V_{ud}V_{cd}^* = -V_{us}V_{cs}^*$ , with both contributions, one has the nonzero components:

$$(H_{\overline{6}})_{3}^{31} = -(H_{\overline{6}})_{3}^{13} = (H_{\overline{6}})_{2}^{12} = -(H_{\overline{6}})_{2}^{21} = V_{us}V_{cs}^{*},$$
  

$$(H_{15})_{3}^{31} = (H_{15})_{3}^{13} = -(H_{15})_{2}^{12} = -(H_{15})_{2}^{21} = V_{us}V_{cs}^{*}.$$
(51)

If the final state contains a bottom meson and a light baryon (octet), we have

$$\mathcal{H}_{\text{eff}} = c_1 \Omega_{cbb} \overline{B}^k \epsilon_{ijl} (\overline{T}_8)^l_k (H_3'')^{[ij]} + c_2 \Omega_{cbb} \overline{B}^i \epsilon_{ijl} (\overline{T}_8)^l_k (H_3'')^{[jk]} 
+ c_3 \Omega_{cbb} \overline{B}^m \epsilon_{ijl} (\overline{T}_8)^l_k M_m^k (H_3'')^{[ij]} + c_4 \Omega_{cbb} \overline{B}^j \epsilon_{ijl} (\overline{T}_8)^l_k M_m^k (H_3'')^{[im]} 
+ c_5 \Omega_{cbb} \overline{B}^k \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_3'')^{[im]} + c_6 \Omega_{cbb} \overline{B}^m \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_3'')^{[ik]} 
+ c_7 \Omega_{cbb} \overline{B}^i \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_3'')^{[km]} + c_8 \Omega_{cbb} \overline{B}^i \epsilon_{ijl} (\overline{T}_8)^l_k (H_6'')^{\{jk\}} 
+ c_9 \Omega_{cbb} \overline{B}^j \epsilon_{ijl} (\overline{T}_8)^l_k M_m^k (H_6'')^{\{im\}} + c_{10} \Omega_{cbb} \overline{B}^k \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_6'')^{\{im\}} 
+ c_{11} \Omega_{cbb} \overline{B}^m \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_6'')^{\{ik\}} + c_{12} \Omega_{cbb} \overline{B}^i \epsilon_{ijl} (\overline{T}_8)^l_k M_m^j (H_6'')^{\{km\}}.$$
(89)

Decay amplitudes for different channels are obtained by expanding the above Hamiltonian and are collected in Tab. XXI. One can find the amplitudes  $c_1$  and  $c_2$  are not independent, they always

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIDDE THE THEPHOLOGY COULD AND A SOLUCIES HAVE A SOLUCIES AND A LOSS OF THE SOLUCIES |                                                                                               |                                                                   |                                                                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      | amplitude                                                                                     | channel                                                           | amplitude                                                                              |  |  |  |  |  |
| $\begin{split} & \frac{1}{2c_{bb} \rightarrow B^{-} \Lambda^{-}} & \frac{1}{2c_{b} \wedge C^{-} + c_{b} \wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Omega_{cbb}^{0} \rightarrow B^{-}\Sigma^{+}$                                       |                                                                                               | $\Omega_{cbb}^{0} \rightarrow \overline{B}_{s}^{0} \Lambda^{0}$   | $\sqrt{\frac{2}{3}} (-2c_1) V_{ub} V_{cd}^*$                                           |  |  |  |  |  |
| $\begin{split} & n_{cbb} \rightarrow B^{-2} \Delta & \frac{\sqrt{2}}{\Omega_{cbb}^{0} \rightarrow B^{-p}} & (-2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_8) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_2 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_2 + c_2 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_2 + c_2 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_2 + c_1 + c_2 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_2 + c_2 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & (2c_1 + c_1 + c_1 + c_1) V_{ub} V_{cs}^{a} \\ & \Omega_{cbb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} \rightarrow B^{-p} & \Omega_{cb}^{0} & (c_1 + c_1 + c_2 + c_1 + c_1) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Omega_{cbb}^{0} \rightarrow \overline{B}^{0} \Lambda^{0}$                          |                                                                                               | $\Omega_{cbb}^{0} \rightarrow \overline{B}_{s}^{0} \Sigma^{0}$    | $-\sqrt{2}c_8V_{ub}V_{cd}^*$                                                           |  |  |  |  |  |
| $\begin{split} & \Omega_{abb}^{0} \rightarrow B^{-} \Lambda^{0} \pi^{+} & -\frac{(2c_{3}+c_{4}-c_{5}+c_{6}-2c_{7}-c_{9}+c_{10}+3c_{11}+2c_{12})V_{ub}V_{ca}^{*}}{(2c_{3}+c_{4}+c_{5}+c_{6}-2c_{7}-c_{9}-c_{10}+c_{12})V_{ub}V_{ca}^{*}} & \Omega_{abb}^{0} \rightarrow \overline{B}^{0} n\overline{K}^{0} & (c_{4}+c_{5}+c_{9}+c_{10})V_{ub}V_{ca}^{*}}{\sqrt{6}} \\ & \Omega_{abb}^{0} \rightarrow B^{-} \Sigma^{+} \pi^{0} & \frac{(-2c_{3}-c_{4}-c_{5}-c_{6}+c_{9}+c_{10}+c_{11})V_{ub}V_{ca}^{*}}{(-2c_{3}-c_{4}-c_{5}-c_{6}+c_{9}+c_{10}+c_{11})V_{ub}V_{ca}^{*}}} & \Omega_{abb}^{0} \rightarrow \overline{B}^{0} \overline{\Xi}^{0} K^{0} & -(2c_{3}+c_{4}+2c_{5}+c_{6}+c_{7}+c_{9}+c_{11})V_{ub}V_{ca}^{*}} \\ & \Omega_{abb}^{0} \rightarrow B^{-} \Sigma^{+} \pi^{0} & \frac{(-2c_{3}-c_{4}+c_{5}-c_{6}+2c_{7}+c_{9}+3c_{11}+2c_{12})V_{ub}V_{ca}^{*}}{(c_{2}+c_{4}+2c_{5}+c_{6}+c_{7}+c_{9}+2c_{11})V_{ub}V_{ca}^{*}}} & \Omega_{abb}^{0} \rightarrow \overline{B}^{0} \overline{\Xi}^{0} K^{0} & -(2c_{3}+c_{6}+c_{11})V_{ub}V_{ca}^{*}} \\ & \Omega_{abb}^{0} \rightarrow B^{-} \Sigma^{+} \pi^{0} & \frac{(-2c_{3}-c_{4}+c_{5}-c_{6}-2c_{7}+c_{10}+c_{11}+2c_{12})V_{ub}V_{ca}^{*}}{(c_{2}+c_{4}+c_{5}+c_{6}-c_{7}-c_{1}+2c_{11}+2c_{12})V_{ub}V_{ca}^{*}}} & \Omega_{abb}^{0} \rightarrow \overline{B}^{0} \Lambda^{0} \pi^{0} & \frac{(c_{9}+2c_{10}+c_{11}+c_{12})V_{ub}V_{ca}^{*}}{(c_{9}+2c_{1}+c_{1}+c_{12}+c_{1}+c_{1}+c_{12}+2c_{1}+c_{12}+c_{1}+c_{12}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{1}+c_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Omega^0_{cbb} \to \overline{B}{}^0 \Sigma^0$                                       | $\frac{(2c_1+c_8)V_{ub}V_{cs}^*}{\sqrt{2}}$                                                   | $\Omega_{cbb}^{0} \rightarrow \overline{B}_{s}^{0} \Xi^{0}$       | $(-2c_1+c_8) V_{ub} V_{cs}^*$                                                          |  |  |  |  |  |
| $\begin{split} & \frac{1}{2cbb} \rightarrow B^{-} \Lambda^{-} \Lambda^{-} & \frac{1}{2cb} \rightarrow B^{-} \Lambda^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Omega_{cbb}^{0} \to \overline{B}^{0}n$                                             | $(2c_1 - c_8) V_{ub} V_{cd}^*$                                                                | $\Omega_{cbb}^{0} \rightarrow B^{-}p$                             | $(2c_1 + c_8) V_{ub} V_{cd}^*$                                                         |  |  |  |  |  |
| $\begin{split} & \frac{1}{c_{cbb} \to B^{-} \Lambda^{-} \Lambda^{-} \Lambda^{-} \frac{\sqrt{6}}{1} - \frac{1}{c_{cb} \to B^{-} \Lambda^{-} \eta^{-} \frac{\sqrt{6}}{1} - \frac{1}{c_{cb} \to A^{-} \Lambda^{-} \eta^{-} - \frac{\sqrt{6}}{c_{cb} \to B^{-} \Omega^{-} \eta^{-} \frac{\sqrt{6}}{1} - \frac{1}{c_{cb} \to A^{-} \Lambda^{-} \eta^{-} - \frac{\sqrt{6}}{c_{cb} \to B^{-} \Omega^{-} \eta^{-} \frac{1}{c_{cb} + 2c_{cb} - c_{cc} + c_{cc} + 1c_{cc} + 2c_{cb} - c_{cc} + 1c_{cc} + 1c_{cc} + 2c_{cb} - c_{cc} + 1c_{cc} + 1c_{cc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Omega_{cbb}^{0} \rightarrow B^{-} \Lambda^{0} \pi^{+}$                             | $-\frac{(2c_3+c_4-c_5+c_6-2c_7-c_9+c_{10}+3c_{11}+2c_{12})V_{ub}V_{cs}^*}{\sqrt{6}}$          | $\Omega_{cbb}^{0} \to \overline{B}{}^{0} n \overline{K}{}^{0}$    | $(c_4 + c_5 + c_9 + c_{10}) V_{ub} V_{cs}^*$                                           |  |  |  |  |  |
| $\begin{split} & \frac{1}{c_{bb}} \rightarrow B = 2^{-\kappa} & \frac{1}{c_{bb}} \rightarrow B = 2^{-\kappa} & (1 + c_{b} + c_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Omega_{cbb}^{0} \to B^{-} \Lambda^{0} K^{+}$                                       | $-\frac{(4c_3+2c_4+c_5+2c_6-c_7-2c_9-c_{10}+c_{12})V_{ub}V_{cd}^*}{\sqrt{6}}$                 | $\Omega_{cbb}^{0} \to \overline{B}^{0} n\eta$                     | $\frac{(2c_3+c_4+2c_5+c_6+c_7+c_9+c_{11}-c_{12})V_{ub}V_{cd}^*}{\sqrt{6}}$             |  |  |  |  |  |
| $\begin{array}{lll} \Omega^0_{cbb} \to B^- \Sigma^+ \eta & \frac{(-2c_3 - c_4 + c_5 - c_6 + 2c_7 + c_9 + 3c_10 + c_{11} + 2c_{12})V_{ub}V_{cs}^*}{\sqrt{6}} & \Omega^0_{cbb} \to \overline{B}^0_s \Lambda^0 \pi^0 & \frac{(c_9 + 2c_1 + c_{12})V_{ub}V_{cs}^*}{\sqrt{6}} \\ \Omega^0_{cbb} \to B^- \Sigma^0 \pi^+ & \frac{(2c_3 + c_4 + c_5 + c_6 - c_9 - c_{10} - c_{11})V_{ub}V_{cs}^*}{\sqrt{2}} & \Omega^0_{cbb} \to \overline{B}^0_s \Lambda^0 \eta & \frac{1}{3} (4c_3 - c_4 - 2c_5 + 2c_6 - c_7)V_{ub}V_{cs}^*}{\sqrt{6}} \\ \Omega^0_{cbb} \to B^- \Sigma^0 K^+ & \frac{(-c_5 - c_7 + c_{10} + 2c_{11} + c_{12})V_{ub}V_{cs}^*}{\sqrt{2}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \pi^\eta & \frac{1}{3} (4c_3 - c_4 - 2c_5 + 2c_6 - c_7)V_{ub}V_{cs}^*}{\sqrt{6}} \\ \Omega^0_{cbb} \to B^- \Xi^0 K^+ & -(2c_3 + c_4 + c_6 - c_7 - c_9 + c_{11} + c_{12})V_{ub}V_{cs}^* & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^+ \pi^- & (-c_4 + c_7 - c_9 + c_{11} + c_{12})V_{ub}V_{cs}^* \\ \Omega^0_{cbb} \to \overline{B}^0 \Lambda^0 \eta & \frac{(2c_3 + c_4 + c_6 - c_7 - c_9 + c_{11} + c_{12})V_{ub}V_{cs}^*}{2\sqrt{3}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta^0 & \frac{(c_7 - c_4)V_{ub}V_{cs}^*}{2\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Lambda^0 \eta & -\frac{(4c_3 + 2c_4 + c_5 - 2c_7 - c_9 + c_{10} + 3c_{11} + 2c_{12})V_{ub}V_{cs}^*}{\sqrt{6}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta^0 & \frac{(c_7 - c_4)V_{ub}V_{cs}^*}{2\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Lambda^0 \eta & \frac{1}{6} (-2c_3 + 5c_4 + c_5 - c_6 - 4c_7 + 3c_9 + 3c_{10} - 3c_{11})V_{ub}V_{cs}^* & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta & \frac{(c_9 - 2c_{11} - c_{12})V_{ub}V_{cs}^*}{\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Sigma^0 \pi^0 & -\frac{1}{2}(2c_3 - c_4 - c_5 + c_6 + c_9 + c_{10}c_{11})V_{ub}V_{cs}^* & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta & \frac{(c_9 - 2c_{11} - c_{12})V_{ub}V_{cs}^*}{\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} + c_{21})V_{ub}V_{cs}^*}{2\sqrt{3}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta & \frac{(c_5 + c_7 + c_9 - c_{12})V_{ub}V_{cs}^*}{\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} + c_{11})V_{ub}V_{cs}^*}{2\sqrt{3}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} - c_{12})V_{ub}V_{cs}^*}{\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} + c_{12})V_{ub}V_{cs}^*}{2\sqrt{3}} & \Omega^0_{cbb} \to \overline{B}^0_s \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} + c_{12})V_{ub}V_{cs}^*}{\sqrt{3}} \\ \Omega^0_{cbb} \to \overline{B}^0 \Sigma^0 \eta & \frac{(c_5 + c_7 + c_{10} + c_{12})V_{u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Omega_{cbb}^{0} \to B^- \Sigma^+ \pi^0$                                            | $\frac{(-2c_3-c_4-c_5-c_6+c_9+c_{10}+c_{11})V_{ub}V_{cs}^*}{\sqrt{2}}$                        |                                                                   | $(c_4 - c_7 - c_9 + c_{12}) V_{ub} V_{cs}^*$                                           |  |  |  |  |  |
| $\begin{split} & \Pi_{cbb} \to B_{s} \Lambda^{-} \\ & \Pi_{cbb} \to B_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Omega_{cbb}^{0} \to B^- \Sigma^+ K^0$                                              |                                                                                               |                                                                   | $-(2c_3+c_6+c_{11})V_{ub}V_{cs}^*$                                                     |  |  |  |  |  |
| $\begin{split} & \frac{\sqrt{2}}{2} &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Omega_{cbb}^{0}\to B^{-}\Sigma^{+}\eta$                                            | $\sqrt{6}$                                                                                    |                                                                   | $\sqrt{3}$                                                                             |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Omega_{cbb}^{0}\to B^-\Sigma^0\pi^+$                                               | $\sqrt{2}$                                                                                    | $\Omega_{cbb}^{0}\to \overline B{}^0_s \Lambda^0 \overline K{}^0$ | $-\frac{(2c_3+c_4+2c_5+c_6+c_7+c_9+2c_{10}+3c_{11}+c_{12})V_{ub}V_{cs}^*}{\sqrt{6}}$   |  |  |  |  |  |
| $\begin{split} & \Omega_{cbb}^{0} \to B^{-} \overline{\Xi^{0}} K^{+} & -(2c_{3} + c_{4} + c_{6} - c_{7} - c_{9} + c_{11} + c_{12}) V_{ub} V_{cs}^{*} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{0} & \frac{(2c_{3} + c_{4} - c_{5} + c_{6} - 2c_{7} - c_{9} + c_{10} + 3c_{11} + 2c_{12}) V_{ub} V_{cs}^{*}}{2\lambda_{3}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{0} & \frac{(2c_{3} + c_{4} - c_{5} + c_{6} - 2c_{7} - c_{9} + c_{10} + 3c_{11} + 2c_{12}) V_{ub} V_{cs}^{*}}{\sqrt{6}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{0} & \frac{(c_{7} - c_{4}) V_{ub} V_{cd}^{*}}{2\lambda_{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \pi^{0} & -\frac{(4c_{3} + 2c_{4} - c_{5} + c_{6} - 2c_{7} - 2c_{9} + c_{10} - c_{12}) V_{ub} V_{cs}^{*}}{\sqrt{6}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{0} & \frac{(2c_{3} + c_{4} + 6c_{6} - c_{7} + 2c_{9} - c_{11} - c_{12}) V_{ub} V_{cs}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \pi^{-1} & \frac{1}{6} (-2c_{3} + 5c_{4} + c_{5} - c_{6} - 4c_{7} + 3c_{9} + 3c_{10} - 3c_{11}) V_{ub} V_{cs}^{*}}{\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{-1}} & (-c_{4} + c_{7} + c_{9} - c_{12}) V_{ub} V_{cd}^{*}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & -\frac{1}{2} (2c_{3} - c_{4} - c_{5} + c_{6} + c_{9} + c_{10} - c_{11}) V_{ub} V_{cs}^{*}}{\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{-1}} & (-c_{4} + c_{7} + c_{9} - c_{12}) V_{ub} V_{cd}^{*}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & -\frac{1}{2} (2c_{3} - c_{4} - c_{5} + c_{6} + c_{9} + c_{10} - c_{11}) V_{ub} V_{cs}^{*}}{2\sqrt{3}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{+1}} & (-c_{4} + c_{7} + c_{9} - c_{12}) V_{ub} V_{cd}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(c_{5} + c_{7} + c_{10} + c_{11}) V_{ub} V_{cs}^{*}}{2\sqrt{3}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{-1} & (-c_{4} + c_{7} + c_{9} - c_{12}) V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(c_{5} + c_{7} - c_{10} - c_{12}) V_{ub} V_{cd}^{*}}{2\sqrt{3}} & \Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \overline{\Sigma^{0}} \pi^{0} & \frac{(c_{5} + c_{7} - c_{10} - c_{12}) V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \overline{\Sigma^{0}} \pi^{-1} & (-c_{4} - c_{5} + c_{9} + c_{10}) V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \overline{\Sigma^{0}} \pi^{-1} & (-c_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Omega_{cbb}^{0} \rightarrow B^{-} \Sigma^{0} K^{+}$                                | $\frac{(-c_5-c_7+c_{10}+2c_{11}+c_{12})V_{ub}V_{cd}^*}{\sqrt{2}}$                             |                                                                   | $\frac{1}{3} \left( 4c_3 - c_4 - 2c_5 + 2c_6 - c_7 \right) V_{ub} V_{cd}^*$            |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Omega^0_{cbb} \rightarrow B^- n\pi^+$                                              | $(2c_3 + c_4 + c_6 - c_7 - c_9 + c_{11} + c_{12}) V_{ub} V_{cd}^*$                            | $\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \Sigma^{+} \pi^{-}$    | $(-c_4 + c_7 - c_9 + c_{12}) V_{ub} V_{cd}^*$                                          |  |  |  |  |  |
| $\begin{split} & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \pi^{0} & \frac{(2c_{3}+c_{4}-c_{5}+c_{6}-2c_{7}-c_{9}+c_{1}(1+2c_{1})2)V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \Lambda^{0} & -\frac{(4c_{3}+2c_{4}+c_{5}+2c_{6}-c_{7}+2c_{9}+c_{1}(1-2c_{1})2)V_{ub}V_{cd}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \Lambda^{0} & -\frac{(4c_{3}+2c_{4}+c_{5}+2c_{6}-c_{7}+2c_{9}+c_{1}(1-2c_{1})2)V_{ub}V_{cd}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Lambda^{0} \Lambda^{0} & \frac{1}{6} (-2c_{3}+5c_{4}+c_{5}-c_{6}-4c_{7}+3c_{9}+3c_{1}(1-3c_{1}))V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{1}{6} (-2c_{3}+5c_{4}+c_{5}-c_{6}-4c_{7}+3c_{9}+3c_{1}(1-3c_{1}))V_{ub}V_{cs}^{*}}{2} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & -\frac{1}{2} (2c_{3}-c_{4}-c_{5}+c_{6}+c_{9}+c_{1}(1-c_{1}))V_{ub}V_{cs}^{*}}{2} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & -\frac{1}{2} (2c_{3}-c_{4}-c_{5}+c_{6}+c_{9}+c_{1}(1-c_{1}))V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(c_{5}+c_{7}+c_{1}(1+2c_{1}))V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(2c_{3}+c_{4}-c_{5}+c_{6}+c_{1}-c_{1}(1-c_{1}-2))V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(2c_{3}+c_{4}-c_{5}+c_{6}-2c_{7}-c_{9}-3c_{1}(1-c_{1}-2))V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{1} & \frac{(c_{5}+c_{7}+c_{1})+2v_{1}v_{1}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{1} & \frac{(c_{5}+c_{7}+c_{1})+2v_{1}v_{1}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{1} & \frac{(c_{4}+c_{5}-c_{9}-c_{1})V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{1} & \frac{(c_{4}+c_{5}-c_{9}-c_{1})V_{ub}V_{cs}^{*}}{\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & -\frac{(2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}+2c_{1})+c_{1}(1+c_{1})V_{ub}V_{cs}^{*}}{2\sqrt{3}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(c_{4}+c_{5}-c_{9}-c_{1})+2v_{2}V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \Lambda^{0} & -\frac{(2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}+2c_{1})+c_{1}(1+c_{1})V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \pi^{0} & \frac{(c_{5}+c_{7}+c_{1})+c_{1})V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ & \Omega_{cbb}^{0} \to $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                               | $\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \Sigma^{+} K^{-}$      | $(-2c_3 - c_4 - c_6 + c_7 - c_9 + c_{11} + c_{12}) V_{ub} V_{cs}^*$                    |  |  |  |  |  |
| $\begin{split} & \Omega_{cbb}^{\circ} \to \overline{B} \wedge \overline{K} \wedge \qquad -\frac{\sqrt{2}}{\sqrt{2}} & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{2}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to \overline{B}_{s}^{\circ} \Sigma \wedge \qquad -\frac{\sqrt{2}}{\sqrt{3}} \\ & \Omega_{cbb}^{\circ} \to B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | $2\sqrt{3}$                                                                                   | $\Omega_{cbb}^{0}\to \overline B{}^0_s\Sigma^0\pi^0$              |                                                                                        |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Omega_{cbb}^{0} \to \overline{B}{}^{0} \Lambda^{0} K^{0}$                          | $-\frac{(4c_3+2c_4+c_5+2c_6-c_7+2c_9+c_{10}-c_{12})V_{ub}V_{cd}^*}{\sqrt{6}}$                 | $\Omega_{cbb}^{0}\to \overline B{}^0_s\Sigma^0\overline K{}^0$    | $\sqrt{2}$                                                                             |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | $\frac{1}{6} \left(-2 c_3+5 c_4+c_5-c_6-4 c_7+3 c_9+3 c_{10}-3 c_{11}\right) V_{ub} V_{cs}^*$ | $\Omega_{cbb}^{0}\to \overline B{}^0_s\Sigma^0\eta$               | $\frac{(c_9 - 2c_{11} - c_{12})V_{ub}V_{cd}^*}{\sqrt{3}}$                              |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Omega_{cbb}^{0} \rightarrow \overline{B}^{0} \Sigma^{+} \pi^{-}$                   | $(-2c_3 - c_6 + c_{11}) V_{ub} V_{cs}^*$                                                      | $\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \Sigma^{-} \pi^{+}$    | $(-c_4 + c_7 + c_9 - c_{12}) V_{ub} V_{cd}^*$                                          |  |  |  |  |  |
| $\begin{split} & \frac{\sqrt{2}}{\Omega_{cbb}^{0} \to B^{-} \Sigma^{-} \pi^{+}} & \frac{\sqrt{2}}{(c_{3}+c_{4}-c_{5}+c_{6}-c_{7}-c_{9}-3c_{10}-c_{11}-2c_{12})V_{ub}V_{cs}^{*}}}{\Omega_{cbb}^{0} \to \overline{B}^{0}\Sigma^{-} \pi^{+}} & \frac{(c_{5}+c_{7}-c_{10}-c_{12})V_{ub}V_{cs}}{(c_{5}+c_{7}-c_{10}-c_{12})V_{ub}V_{cs}^{*}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}\Sigma^{-} \pi^{+} & \frac{(c_{4}+c_{5}-c_{9}-c_{10})V_{ub}V_{cs}^{*}}{(c_{4}+c_{5}-c_{9}-c_{10})V_{ub}V_{cs}^{*}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}\Sigma^{-} \pi^{+} & \frac{(c_{4}+c_{5}-c_{9}-c_{10})V_{ub}V_{cs}^{*}}{(c_{5}+c_{7}-c_{10}+c_{12})V_{ub}V_{cs}^{*}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}\Sigma^{-} K^{+} & \frac{(-c_{5}-c_{7}+c_{10}+c_{12})V_{ub}V_{cs}^{*}}{(c_{5}+c_{7}-c_{9}+c_{10}+c_{12})V_{ub}V_{cs}^{*}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}\Sigma^{-} K^{+} & \frac{(-c_{5}-c_{7}+c_{10}+c_{12})V_{ub}V_{cs}^{*}}{(c_{5}+c_{7}+c_{9}+c_{10})V_{ub}V_{cs}^{*}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}\pi^{0} & -\frac{(2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}+2c_{10}+c_{11}+c_{12})V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ \Omega_{cbb}^{0} \to B^{-}p\pi^{0} & \frac{(2c_{3}+c_{4}+c_{6}-c_{7}-c_{9}-c_{11}+c_{12})V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ \Omega_{cbb}^{0} \to B^{-}p\pi^{0} & \frac{(2c_{3}+c_{4}+c_{6}+c_{7}-c_{9}-c_{9}-c_{11}+c_{12})V_{ub}V_{cs}^{*}}{\sqrt{6}} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}p\pi^{-} & (2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}-c_{11}-c_{12})V_{ub}V_{cs}^{*} \\ \Omega_{cbb}^{0} \to \overline{B}^{0}p\pi^{-} & (2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}-c_{1}-c_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | $-\frac{1}{2} \left(2c_3 - c_4 - c_5 + c_6 + c_9 + c_{10} - c_{11}\right) V_{ub} V_{cs}^*$    |                                                                   | $(2c_3 + c_6 + c_{11})  V_{ub}  V_{cd}^*$                                              |  |  |  |  |  |
| $\begin{split} & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} \pi^{+} & (c_{4} + c_{5} - c_{9} - c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} \pi^{+} & (c_{4} + c_{5} - c_{9} - c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{+} & (c_{4} - c_{5} - c_{7} + c_{10} + c_{12})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{+} & (c_{5} - c_{7} + c_{10} + c_{12})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{+} & (-c_{5} - c_{7} + c_{10} + c_{12})  V_{ub} V_{cd}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{+} & (-c_{5} - c_{7} + c_{10} + c_{12})  V_{ub} V_{cd}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{+} & (-c_{5} - c_{7} + c_{10} + c_{12})  V_{ub} V_{cd}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{-} K^{0} & -(c_{4} + c_{5} + c_{9} + c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \Lambda^{0} & -(c_{4} + c_{5} + c_{9} + c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \Lambda^{0} & -(c_{4} + c_{5} + c_{9} + c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} \Sigma^{0} \Lambda^{0} & (c_{5} + c_{7} + c_{9} + c_{10})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{-} \overline{B}^{0} \Lambda^{0} & (c_{5} + c_{7} + c_{10} + c_{12})  V_{ub} V_{cs}^{*} \\ & \Omega_{cbb}^{0} \to \overline{B}^{0} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | $\sqrt{2}$                                                                                    | $\Omega_{cbb}^{0}\to \overline B{}^0_s \Xi^- \pi^+$               | $(c_5 + c_7 - c_{10} - c_{12}) V_{ub} V_{cs}^*$                                        |  |  |  |  |  |
| $\begin{split} & \frac{\Omega^0_{cbb} \to \overline{B}^0 \Sigma^- K^+}{\Omega^0_{cbb} \to \overline{B}^0 n \pi^0} & -\frac{(-c_5 - c_7 + c_{10} + c_{12})  V_{ub}  V_{cd}^*}{\sqrt{2}} & \Omega^0_{cbb} \to \overline{B}^0_s \overline{\Xi}^0 K^0 & -(c_4 + c_5 + c_9 + c_{10})  V_{ub}  V_{cd}^*}{\sqrt{6}} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 n \pi^0}{\Omega^0_{cbb} \to \overline{B}^- p \pi^0} & -\frac{(2c_3 + c_4 + c_6 - c_7 + c_9 + 2c_{10} + c_{11} + c_{12})  V_{ub}  V_{cd}^*}{\sqrt{6}} & \Omega^0_{cbb} \to \overline{B}^- p \overline{K}^0 & (c_5 + c_7 + c_{10} + c_{12})  V_{ub}  V_{cs}^*}{\sqrt{6}} \\ & \frac{\Omega^0_{cbb} \to B^- p \pi^0}{2(2c_3 + c_4 + c_5 - c_7 - c_9 - 2c_{10} - c_{11} - c_{12})  V_{ub}  V_{cd}^*}{\sqrt{6}} & \Omega^0_{cbb} \to B^- p \overline{K}^0 & (c_5 + c_7 + c_{10} + c_{12})  V_{ub}  V_{cs}^*}{\sqrt{6}} \\ & \frac{\Omega^0_{cbb} \to B^- p \pi^0}{\sqrt{6}} & \frac{(2c_3 + c_4 + c_5 - c_5 - c_7 - c_{9} - c_{11} + c_{12})  V_{ub}  V_{cd}^*}{\sqrt{6}} & \Omega^0_{cbb} \to \overline{B}^0 p \pi^- & (2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12})  V_{ub}  V_{cd}^*} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 p \pi^-}{\sqrt{6}} & (2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12})  V_{ub}  V_{cd}^*} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 p \pi^-}{\sqrt{6}} & (2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12})  V_{ub}  V_{cd}^*} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 p \pi^-}{\sqrt{6}} & (2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12})  V_{ub}  V_{cd}^*} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 p \pi^-}{\sqrt{6}} & (2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12})  V_{ub}  V_{cd}^*} \\ & \frac{\Omega^0_{cbb} \to \overline{B}^0 p \pi^-}{\sqrt{6}} & \frac{\Omega^0_{cbb} \to \overline{B}^0_{cbb} \to \overline{B}^0_{cbb} + \overline{B}^0_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Omega_{cbb}^{0}\to \overline B{}^0\Sigma^0\eta$                                    |                                                                                               | $\Omega_{cbb}^{0}\to \overline B{}^0_s \Xi^- K^+$                 |                                                                                        |  |  |  |  |  |
| $\begin{array}{ccc} \Omega^{0}_{cbb} \to \overline{B}{}^{0} n \pi^{0} & -\frac{(2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}+2c_{10}+c_{11}+c_{12})V_{ub}V^{*}_{cd}}{\sqrt{6}} \\ \Omega^{0}_{cbb} \to B^{-} p \pi^{0} & \frac{(2c_{3}+c_{4}+c_{6}-c_{7}-c_{9}-2c_{10}-c_{11}-c_{12})V_{ub}V^{*}_{cd}}{\sqrt{6}} \\ \Omega^{0}_{cbb} \to B^{-} p \pi^{0} & \frac{(2c_{3}+c_{4}+c_{6}-c_{7}-c_{9}-2c_{10}-c_{11}-c_{12})V_{ub}V^{*}_{cd}}{\sqrt{6}} \\ \Omega^{0}_{cbb} \to B^{-} p \pi^{0} & \frac{(2c_{3}+c_{4}+2c_{5}+c_{6}+c_{7}-c_{9}-c_{11}+c_{12})V_{ub}V^{*}_{cd}}{\sqrt{6}} \\ \Omega^{0}_{cbb} \to B^{-} p \pi^{0} & \frac{(2c_{3}+c_{4}+2c_{5}+c_{6}+c_{7}-c_{9}-c_{11}+c_{12})V_{ub}V^{*}_{cd}}{\sqrt{6}} \\ \Omega^{0}_{cbb} \to \overline{B}{}^{0} p \pi^{-} & (2c_{3}+c_{4}+c_{6}-c_{7}+c_{9}-c_{11}-c_{12})V_{ub}V^{*}_{cd} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Omega_{cbb}^{0}\to \overline B{}^0\Sigma^-\pi^+$                                   | $(c_4 + c_5 - c_9 - c_{10}) V_{ub} V_{cs}^*$                                                  |                                                                   | $\frac{(-c_5 - c_7 + c_{10} + c_{12})V_{ub}V_{cs}^*}{\sqrt{2}}$                        |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | $(-c_5 - c_7 + c_{10} + c_{12}) V_{ub} V_{cd}^*$                                              | $\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} \Xi^{0} K^{0}$         |                                                                                        |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Omega_{cbb}^{0} \to \overline{B}^{0} n \pi^{0}$                                    | $-\sqrt{2}$                                                                                   |                                                                   | $\tfrac{(4c_3+2c_4+c_5+2c_6-c_7+2c_9+3c_{10}+2c_{11}+c_{12})V_{ub}V_{cs}^*}{\sqrt{6}}$ |  |  |  |  |  |
| $\Sigma_{cbb} \rightarrow B  p\pi \qquad \qquad \Sigma_{cbb} \rightarrow D  p\pi \qquad \qquad \Sigma_{cb} \rightarrow D  p\pi \qquad \Sigma_{cb} \rightarrow D  p\pi \qquad \qquad \Sigma_{c$ | $\Omega_{cbb}^{0} \rightarrow B^{-}p\pi^{0}$                                         | $\sqrt{2}$                                                                                    | $\Omega_{cbb}^{0} \to B^{-} p \overline{K}^{0}$                   | $(c_5 + c_7 + c_{10} + c_{12}) V_{ub} V_{cs}^*$                                        |  |  |  |  |  |
| $\Omega^0_{cbb} \to \overline{B}{}^0 p K^- \qquad (c_4 - c_7 + c_9 - c_{12}) V_{ub} V^+_{cs} \qquad \Omega^0_{cbb} \to \overline{B}{}^0_s p K^- \qquad (2c_3 + c_6 - c_{11}) V_{ub} V^+_{cd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000                                                                                  | $\frac{(2c_3+c_4+2c_5+c_6+c_7-c_9-c_{11}+c_{12})V_{ub}V_{cd}^*}{\sqrt{6}}$                    |                                                                   | $(2c_3 + c_4 + c_6 - c_7 + c_9 - c_{11} - c_{12}) V_{ub} V_{cd}^*$                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Omega^0_{cbb} \to \overline{B}{}^0 p K^-$                                          | $(c_4 - c_7 + c_9 - c_{12}) V_{ub} V_{cs}^*$                                                  | $\Omega_{cbb}^{0} \to \overline{B}_{s}^{0} p K^{-}$               | $(2c_3 + c_6 - c_{11}) V_{ub} V_{cd}^*$                                                |  |  |  |  |  |

TABLE XXI: Amplitudes for  $\Omega_{cbb}$  decays into a bottom meson and a light baryon (octet)

| Currently, the best determination of the magnitudes of the CKM matrix elements is: <sup>[6]</sup> $\begin{bmatrix}  V_{ud}  &  V_{us}  &  V_{ub}  \\  V_{cd}  &  V_{cs}  &  V_{cb}  \\  V_{td}  &  V_{ts}  &  V_{tb}  \end{bmatrix} = \begin{bmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & 0.00351^{+0.00015}_{-0.00014} \\ 0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & 0.0412^{+0.0011}_{-0.0005} \\ 0.00867^{+0.00029}_{-0.0029} & 0.0404^{+0.0011}_{-0.0011} & 0.999146^{+0.00021}_{-0.00021} \end{bmatrix}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                   |              |                                                     |                                     |                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|-------------------------------------|-------------------------------------------|--|--|
| $egin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Currently, th | Currently, the best determination of the magnitudes of the CKM matrix elements is: <sup>[6]</sup> |              |                                                     |                                     |                                           |  |  |
| Example States States St. An Antonio States State | $ V_{ud} $    | $ V_{us} $                                                                                        | $ V_{ub} $   | $0.97427 \pm 0.00015$                               | $0.22534 \pm 0.00065$               | $0.00351\substack{+0.00015\\-0.00014}$    |  |  |
| $ V_{td}   V_{ts}   V_{tb}  = 0.00867^{+0.00029} = 0.0404^{+0.0011} = 0.999146^{+0.00021}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ V_{cd} $    | $ V_{cs} $                                                                                        | $ V_{cb}  =$ | $0.22520 \pm 0.00065$                               | $0.97344 \pm 0.00016$               | $0.0412\substack{+0.0011\\-0.0005}$       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ V_{td} $    | $ V_{ts} $                                                                                        | $ V_{tb} $   | $\begin{smallmatrix} 0.00867^{+0.00029}_{-0.00031}$ | $0.0404\substack{+0.0011\\-0.0005}$ | $0.999146\substack{+0.000021\\-0.000046}$ |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                   |              |                                                     |                                     |                                           |  |  |

This can also be written in matrix notation as:

$$egin{bmatrix} d' \ s' \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} \ V_{cd} & V_{cs} \end{bmatrix} egin{bmatrix} d \ s \end{bmatrix},$$

or using the Cabibbo angle

$$egin{bmatrix} d' \ s' \end{bmatrix} = egin{bmatrix} \cos heta_{
m c} & \sin heta_{
m c} \ -\sin heta_{
m c} & \cos heta_{
m c} \end{bmatrix} egin{bmatrix} d \ s \end{bmatrix},$$

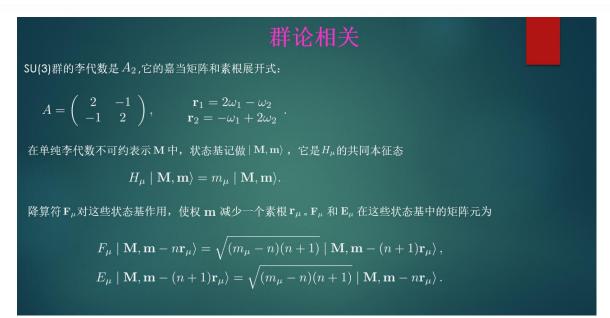
where the various  $|V_{jk}|^2$  represent the probability that the quark of *j* flavor decays into a quark of *j* flavor. This 2 × 2 rotation matrix is called the Cabibbo matrix.

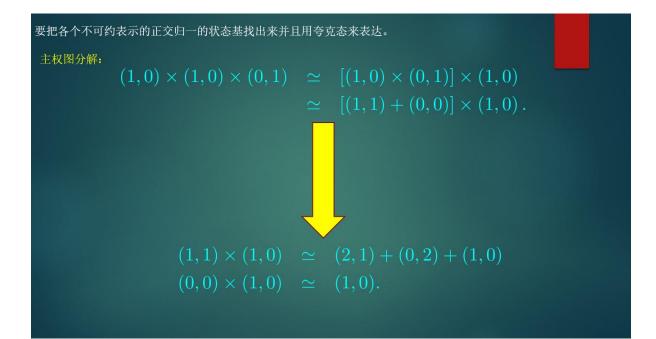
# Commonly used prefixed versions [edit]

| Conversion to SI units <sup>[5][6]</sup> |        |                   |                   |  |  |  |  |  |
|------------------------------------------|--------|-------------------|-------------------|--|--|--|--|--|
| Unit                                     | Symbol | m <sup>2</sup>    | cm <sup>2</sup>   |  |  |  |  |  |
| megabarn                                 | Mb     | 10 <sup>-22</sup> | 10 <sup>-18</sup> |  |  |  |  |  |
| kilobarn                                 | kb     | 10 <sup>-25</sup> | 10 <sup>-21</sup> |  |  |  |  |  |
| barn                                     | b      | 10 <sup>-28</sup> | 10 <sup>-24</sup> |  |  |  |  |  |
| millibarn                                | mb     | 10 <sup>-31</sup> | 10 <sup>-27</sup> |  |  |  |  |  |
| microbarn                                | μb     | 10 <sup>-34</sup> | 10 <sup>-30</sup> |  |  |  |  |  |
| nanobarn                                 | nb     | 10 <sup>-37</sup> | 10 <sup>-33</sup> |  |  |  |  |  |
| picobarn                                 | pb     | 10 <sup>-40</sup> | 10 <sup>-36</sup> |  |  |  |  |  |
| femtobarn                                | fb     | 10 <sup>-43</sup> | 10 <sup>-39</sup> |  |  |  |  |  |
| attobarn                                 | ab     | 10 <sup>-46</sup> | 10 <sup>-42</sup> |  |  |  |  |  |
| zeptobarn                                | zb     | 10 <sup>-49</sup> | 10 <sup>-45</sup> |  |  |  |  |  |
| yoctobarn                                | yb     | 10 <sup>-52</sup> | 10 <sup>-48</sup> |  |  |  |  |  |

### 101101

The tree operators transform under the flavor SU(3) symmetry as  $\mathbf{3} \otimes \mathbf{\overline{3}} \otimes \mathbf{3} = \mathbf{3} \oplus \mathbf{3} \oplus \mathbf{\overline{6}} \oplus \mathbf{15}$ .





#### Charmed Baryon Weak Decays with SU(3) Flavor Symmetry

C.Q. Geng<sup>1,2</sup>, Y.K. Hsiao<sup>1,2</sup>, Chia-Wei Liu<sup>2</sup> and Tien-Hsueh Tsai<sup>2</sup>

<sup>1</sup>School of Physics and Information Engineering,

Shanxi Normal University, Linfen 041004, China

<sup>2</sup>Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

(Dated: November 7, 2017)

#### Abstract

We study the semileptonic and non-leptonic charmed baryon decays with SU(3) flavor symmetry, where the charmed baryons can be  $\mathbf{B}_c = (\Xi_c^0, \Xi_c^+, \Lambda_c^+)$ ,  $\mathbf{B}'_c = (\Sigma_c^{(++,+,0)}, \Xi_c^{\prime(+,0)}, \Omega_c^0)$ ,  $\mathbf{B}_{cc} = (\Xi_{cc}^{++}, \Xi_{cc}^+, \Omega_{cc}^+)$ , or  $\mathbf{B}_{ccc} = \Omega_{ccc}^{++}$ . With  $\mathbf{B}_n^{(\prime)}$  denoted as the baryon octet (decuplet), we find that the  $\mathbf{B}_c \to \mathbf{B}'_n \ell^+ \nu_\ell$  decays are forbidden, while the  $\Omega_c^0 \to \Omega^- \ell^+ \nu_\ell$ ,  $\Omega_{cc}^+ \to \Omega_c^0 \ell^+ \nu_\ell$ , and  $\Omega_{ccc}^{++} \to \Omega_{cc}^+ \ell^+ \nu_\ell$  decays are the only existing Cabibbo-allowed modes for  $\mathbf{B}'_c \to \mathbf{B}'_n \ell^+ \nu_\ell$ ,  $\mathbf{B}_{cc} \to \mathbf{B}'_c \ell^+ \nu_\ell$ , and  $\mathbf{B}_{ccc} \to \mathbf{B}_{cc}^{(\prime)} \ell^+ \nu_\ell$ , respectively. We predict the rarely studied  $\mathbf{B}_c \to \mathbf{B}_n^{\prime} \ell^+ \nu_\ell$ ,  $\mathbf{B}_{cc} \to \mathbf{B}'_c \ell^+ \nu_\ell$ , and  $\mathbf{B}_{ccc} \to \mathbf{B}_{cc}^{\prime\prime} \ell^+ \nu_\ell$ , respectively. We predict the rarely studied  $\mathbf{B}_c \to \mathbf{B}_n^{\prime\prime} M$  decays, such as  $\mathcal{B}(\Xi_c^0 \to \Lambda^0 \bar{K}^0, \Xi_c^+ \to \Xi^0 \pi^+) = (8.3 \pm 0.9, 8.0 \pm 4.1) \times 10^{-3}$  and  $\mathcal{B}(\Lambda_c^+ \to \Delta^{++} \pi^-, \Xi_c^0 \to \Omega^- K^+) = (5.5 \pm 1.3, 4.8 \pm 0.5) \times 10^{-3}$ . For the observation, the doubly and triply charmed baryon decays of  $\Omega_{cc}^+ \to \Xi_c^+ \bar{K}^0$ ,  $\Xi_{cc}^+ \to (\Xi_c^+ \pi^+, \Sigma_c^{++} \bar{K}^0)$ , and  $\Omega_{ccc}^{++} \to (\Xi_{cc}^+ \pi^0, \Omega_{cc}^+ \pi^+, \Xi_c^+ D^+)$  are the favored Cabibbo-allowed decays, which are accessible to the BESIII and LHCb experiments.

$$\begin{split} \frac{d\Gamma}{dq^2 d\cos\theta} &= \frac{\sqrt{\lambda} G_F^2 q^2}{1024 \pi^3 m_I^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \left((m_I + m_f)^2 - q^2\right) |V_{\rm CKM}|^2 \\ &\times \bigg\{ \left(|H_{1,-1/2}^{V,3/2}|^2 + |H_{1,-1/2}^{A,3/2}|^2 + |H_{1,1/2}^{V,1/2}|^2 + |H_{1,1/2}^{A,1/2}|^2\right) \left(1 + \cos^2\theta + \frac{m_l^2}{q^2} \sin^2\theta\right) \\ &- 4\cos\theta \operatorname{Re}[H_{1,-1/2}^{V,3/2} (H_{1,-1/2}^{A,3/2})^* + H_{1,1/2}^{V,1/2} (H_{1,1/2}^{A,1/2})^*] \\ &+ (|H_{0,-1/2}^{V,1/2}|^2 + |H_{0,-1/2}^{A,1/2}|^2) \left(2\sin^2\theta + \frac{2m_l^2}{q^2} \cos^2\theta\right) + (|H_{t,-1/2}^{V,1/2}|^2 + |H_{t,-1/2}^{A,1/2}|^2) \frac{2m_l^2}{q^2} \\ &- 4\cos\theta \frac{m_l^2}{q^2} \left(\operatorname{Re}[H_{0,-1/2}^{V,1/2} (H_{t,-1/2}^{V,1/2})^* + H_{0,-1/2}^{A,1/2} (H_{t,-1/2}^{A,1/2})^*]\right) \bigg\}. \end{split}$$

$$\begin{split} H_{1,-1/2}^{V,3/2} &= H_{-1,1/2}^{V,-3/2} = f_4, \quad H_{1,-1/2}^{A,3/2} = -H_{-1,-1/2}^{A,-3/2} = \frac{g_4\sqrt{\hat{\lambda}}}{\hat{f}_+}, \\ H_{0,-1/2}^{V,1/2} &= H_{0,1/2}^{V,-1/2} = -\frac{f_1(1+\hat{m}_f)\hat{f}_-}{\sqrt{6}(1-\hat{m}_f)\sqrt{\hat{q}^2}} - \frac{\hat{\lambda}f_2}{\sqrt{6}(1-\hat{m}_f^2)\sqrt{\hat{q}^2}} + \frac{f_3\hat{f}_-\sqrt{\hat{q}^2}}{\sqrt{6}} + \frac{f_4(1+\hat{q}^2-\hat{m}_f^2)}{\sqrt{6}\sqrt{\hat{q}^2}}, \\ H_{0,-1/2}^{A,1/2} &= -H_{0,1/2}^{A,-1/2} = \frac{g_1\hat{\lambda}(1-\hat{m}_f)}{\sqrt{6}(1+\hat{m}_f)\sqrt{\hat{q}^2}} - \frac{g_2\sqrt{\hat{\lambda}}\hat{f}_-}{\sqrt{6}(1-\hat{m}_f^2)\sqrt{\hat{q}^2}} + \frac{g_3\sqrt{\hat{\lambda}}\sqrt{\hat{q}^2}}{\sqrt{6}} + \frac{g_4\sqrt{\hat{\lambda}}(1+\hat{q}^2-\hat{m}_f^2)}{\sqrt{6}\hat{f}_+\sqrt{\hat{q}^2}}, \\ H_{0,-1/2}^{V,1/2} &= -H_{0,1/2}^{A,-1/2} = -\frac{(f_1+f_2-f_4)\sqrt{\hat{\lambda}}}{\sqrt{6\hat{q}^2}}, \\ H_{t,-1/2}^{L,1/2} &= -H_{t,1/2}^{A,-1/2} = -\frac{(g_1-g_2+g_4)\hat{f}_-}{\sqrt{6\hat{q}^2}}, \\ H_{1,1/2}^{A,1/2} &= -H_{t,1/2}^{A,-1/2} = -\frac{f_1\hat{f}_-}{\sqrt{3}(1-\hat{m}_f)} + \frac{f_3(1+\hat{m}_f)\hat{f}_-}{\sqrt{3}} + \frac{f_4}{\sqrt{3}}, \\ H_{1,1/2}^{A,1/2} &= -H_{-1,-1/2}^{A,-1/2} = -\frac{g_1\sqrt{\hat{\lambda}}}{\sqrt{3}(1+\hat{m}_f)} - \frac{g_3\sqrt{\hat{\lambda}}(1-\hat{m}_f)}{\sqrt{3}} - \frac{f_4\sqrt{\hat{\lambda}}}{\sqrt{3}\hat{f}_+}. \end{split}$$

For the color-allowed decay channel, one may use the factorization approach to predict its decay widths. Using the form factors, we have the decay width:

$$\Gamma(\Omega_{ccc}^{++} \to \Omega_{cc}^{+} \pi^{+}) = \frac{\sqrt{\lambda} G_{F}^{2}}{64\pi m_{\Omega_{ccc}}^{3+}} |V_{cs} V_{ud}|^{2} f_{\pi}^{2} \left[ |H_{t,-1/2}^{V,1/2}|^{2} + |H_{t,-1/2}^{A,1/2}|^{2} \right],$$
(53)

where the  $H_i$ s are helicity amplitudes:

$$H_{t,-1/2}^{V,1/2} = -\frac{(f_1 + f_2 - f_4)\sqrt{\hat{\lambda}}}{\sqrt{6\hat{m}_{\pi}^2}}, \quad H_{t,-1/2}^{A,1/2} = \frac{(g_1 - g_2 + g_4)\hat{f}_-}{\sqrt{6\hat{m}_{\pi}^2}}.$$
(54)

In the above equation, we used  $\hat{m}_{\Omega_{cc}^+} = m_{\Omega_{cc}^+}/m_{\Omega_{ccc}^{++}}$ ,  $\hat{m}_{\pi} = m_{\pi}/m_{\Omega_{ccc}^{++}}$ , and the abbreviations

$$\lambda \equiv \lambda(m_{\Omega_{ccc}^{++}}^2, m_{\Omega_{cc}^{+}}^2, m_{\pi}^2) = (m_{\Omega_{ccc}^{++}}^2 - m_{\Omega_{cc}^{+}}^2 - m_{\pi}^2)^2 - 4m_{\Omega_{cc}^{+}}^2 m_{\pi}^2,$$
$$\hat{\lambda} \equiv \lambda(1, \hat{m}_{\Omega_{cc}^{+}}^2, \hat{m}_{\pi}^2) = (1 - \hat{m}_{\Omega_{cc}^{+}}^2 - \hat{m}_{\pi}^2)^2 - 4\hat{m}_{\Omega_{cc}^{+}}^2 \hat{m}_{\pi}^2,$$
$$\hat{f}_{-} = (1 - \hat{m}_{\Omega_{cc}^{+}})^2 - \hat{m}_{\pi}^2.$$
(55)

### **D.** Charmless $b \rightarrow q_1 \bar{q}_2 q_3$ Decays

#### 1. Decays into a doubly bottom baryon bbq and a light meson

The charmless  $b \to q$  (q = d, s) transition is controlled by the weak Hamiltonian  $\mathcal{H}_{eff}$ :

$$\mathcal{H}_{e.w.} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub} V_{uq}^* \left[ C_1 O_1^{\bar{u}u} + C_2 O_2^{\bar{u}u} \right] - V_{tb} V_{tq}^* \left[ \sum_{i=3}^{10} C_i O_i \right] \right\} + \text{h.c.},$$
(74)

where  $O_i$  is a four-quark operator or a moment type operator. The four-quark operators  $O_i$  are given as follows:

$$O_{1}^{\bar{u}u} = (\bar{q}^{i}u^{j})_{V-A}(\bar{u}^{j}b^{i})_{V-A}, \quad O_{2}^{\bar{u}u} = (\bar{q}u)_{V-A}(\bar{u}b)_{V-A},$$

$$O_{3} = (\bar{q}b)_{V-A}\sum_{q'}(\bar{q}'q')_{V-A}, \quad O_{4} = (\bar{q}^{i}b^{j})_{V-A}\sum_{q'}(\bar{q}'^{j}q'^{i})_{V-A},$$

$$O_{5} = (\bar{q}b)_{V-A}\sum_{q'}(\bar{q}'q')_{V+A}, \quad O_{6} = (\bar{q}^{i}b^{j})_{V-A}\sum_{q'}(\bar{q}'^{j}q'^{i})_{V+A},$$

$$O_{7} = \frac{3}{2}(\bar{q}b)_{V-A}\sum_{q'}e_{q'}(\bar{q}'q')_{V+A}, \quad O_{8} = \frac{3}{2}(\bar{q}^{i}b^{j})_{V-A}\sum_{q'}e_{q'}(\bar{q}'^{j}q'^{i})_{V+A},$$

$$O_{9} = \frac{3}{2}(\bar{q}b)_{V-A}\sum_{q'}e_{q'}(\bar{q}'q')_{V-A}, \quad O_{10} = \frac{3}{2}(\bar{q}^{i}b^{j})_{V-A}\sum_{q'}e_{q'}(\bar{q}'^{j}q'^{i})_{V-A}.$$
(75)

In the above the q denotes a d quark for the  $b \to d$  transition or an s quark for the  $b \to s$  transition, while q' = u, d, s. The V and A denotes the vector and axial-vector currents. In the SU(3) group, penguin operators behave as the **3** representation while tree operators can be decomposed in terms of a vector  $H_3$ , a traceless tensor antisymmetric in upper indices,  $H_{\overline{6}}$ , and a traceless tensor symmetric in upper indices,  $H_{15}$ .

For the  $\Delta S = 0(b \rightarrow d)$  decays, the non-zero components of the effective Hamiltonian are:

$$(H_3)^2 = 1, \quad (H_{\overline{6}})_1^{12} = -(H_{\overline{6}})_1^{21} = (H_{\overline{6}})_3^{23} = -(H_{\overline{6}})_3^{32} = 1,$$
  
$$2(H_{15})_1^{12} = 2(H_{15})_1^{21} = -3(H_{15})_2^{22} = -6(H_{15})_3^{23} = -6(H_{15})_3^{32} = 6,$$
 (76)

and all other remaining entries are zero. For the  $\Delta S = 1(b \rightarrow s)$  decays the nonzero entries in the  $H_3$ ,  $H_{\overline{6}}$ ,  $H_{15}$  are obtained from Eq. (76) with the exchange  $2 \leftrightarrow 3$ .

### Variational Study of Weakly Coupled Triply Heavy Baryons

Yu Jia

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

### Abstract

Baryons made of three heavy quarks become weakly coupled, when all the quarks are sufficiently heavy such that the typical momentum transfer is much larger than  $\Lambda_{\rm QCD}$ . We use variational method to estimate masses of the lowest-lying *bcc*, *ccc*, *bbb* and *bbc* states by assuming they are Coulomb bound states. Our predictions for these states are systematically lower than those made long ago by Bjorken.

## Covariant Light-Front Approach for $B_c$ transition form factors

Wei Wang<sup>a</sup>, Yue-Long Shen<sup>b</sup>, and Cai-Dian  $L\ddot{u}^{a,c}$ 

<sup>a</sup> Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Peoples' Republic of China

<sup>b</sup>Institute of Information Science and Engineering,

Ocean University of China, Qingdao 266100, Peoples' Republic of China

<sup>c</sup> Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China

In the covariant light-front quark model, we investigate the form factors of  $B_c$  decays into  $D, D^*, D_s, D_s^*, \eta_c, J/\psi, B, B^*, B_s, B_s^*$  mesons. The form factors in the spacelike region are directly evaluated. To extrapolate the form factors to the physical region, we fit the form factors by adopting a suitable three-parameter form. At the maximally recoiling point,  $b \to u, d, s$  transition form factors are smaller than  $b \to c$  and  $c \to d, s$  form factors, while the  $b \to u, d, s, c$  form factors at the zero recoiling point are close to each other. In the fitting procedure, we find that parameters in  $A_2^{B_c B^*}$  and  $A_2^{B_c B_s^*}$  strongly depend on decay constants of  $B^*$  and  $B_s^*$  mesons. Fortunately, semileptonic and nonleptonic  $B_c$  decays are not sensitive to these two form factors. We also investigate branching fractions, polarizations of the semileptonic  $B_c$  decays.  $B_c \to (\eta_c, J/\psi) l\nu$  and  $B_c \to (B_s, B_s^*) l\nu$  decays have much larger branching fractions than  $B_c \to (D, D^*, B, B^*) l\nu$ . For the three kinds of  $B_c \to V l\nu$  decays, longitudinal contributions are comparable with the transverse contributions. These predictions will be tested on the ongoing and forthcoming hadron colliders.

PACS numbers: 13.20.He, 12.39.Ki