Study of heavy baryons in the diquark picture: success and difficulty

Bing Chen

Anyang Normal University

Cooperators: Xiang Liu, Ailin Zhang, Ke-wei Wei, and Takayuki Matsuki

2. Explanation for the heavy baryons in diquark picture

3. Summary : success and difficulty

Status of charmed baryons

State	Mass	Width	Decay modes	State	Mass	Width	Decay modes
Λ_c^+	2286.46 ± 0.14		Weak	Ξ^0	$2470.85^{+0.28}_{-0.10}$		
$\Lambda_{c}(2595)^{+}$	2592.25 ± 0.28	2.6 ± 0.6	$\Lambda_c \pi \pi, \Sigma_c \pi$	Ξ'^+	$2578.3 \pm 0.5^*$		$\Xi_c \gamma$
$\Lambda_c(2625)^+$	2628.11 ± 0.19	< 0.97	$\Lambda_c \pi \pi, \Sigma_c^{(*)} \pi$	Ξ'^{0}	$2579.2 \pm 0.5^{*}$		$\Xi_c \gamma$
$\Lambda_{c}(2765)^{+}$	2766.6 ± 2.4	50	$\Sigma_c \pi, \Lambda_c \pi \pi$	$\Xi_c(2645)^+$	$2645.7 \pm 0.3^{*}$	$2.1\pm0.2^{*}$	$\Xi_c \pi$
$\Lambda_c(2860)^+$	$2856.1^{+2.3}_{-5.9}$	$67.6^{+11.8}_{-21.6}$	$\Sigma_c^{(*)}\pi, D^0p, D^+n$	$\Xi_{c}(2645)^{0}$	$2646.3 \pm 0.3^{*}$	$2.35\pm0.22^*$	$\Xi_c \pi$
$\Lambda_c(2880)^+$	$2881.64\pm0.25^\dagger$	$5.6\pm0.7^{\dagger}$	$\Sigma_c^{(*)}\pi, \Lambda_c\pi\pi, D^0p, D^+n$	$\Xi_c(2790)^+$	$2791.5\pm0.6^*$	$8.9 \pm 1.0^{*}$	$\Xi_c'\pi, \Xi_c\pi, \Lambda_car{K}$
$\Lambda_{c}(2940)^{+}$	$2939.8\pm1.4^{\dagger}$	$20\pm6^{\dagger}$	$\Sigma_{c}^{(*)}\pi, \Lambda_{c}\pi\pi, D^{0}p, D^{+}n$	$\Xi_c(2790)^0$	$2794.8\pm0.6^*$	$10.0\pm1.1^*$	$\Xi_c'\pi, \Xi_c\pi, \Lambda_car{K}$
$\Sigma_c(2455)^{++}$	2453.97 ± 0.14	$1.89^{+0.09}_{-0.18}$	$\Lambda_c \pi$	$\Xi_c(2815)^+$	$2816.7\pm0.3^*$	$2.43\pm0.26^*$	$\Xi_c^*\pi, \Xi_c\pi\pi, \Xi_c'\pi$
$\Sigma_{c}(2455)^{+}$	2452.9 ± 0.4	$< 4.6^{-0.18}$	$\Lambda_c \pi$	$\Xi_c(2815)^0$	$2820.2\pm0.3^*$	$2.54\pm0.25^*$	$\Xi_c^*\pi, \Xi_c\pi\pi, \Xi_c'\pi$
$\Sigma_{c}(2455)^{0}$	2453.75 ± 0.14	$1.83^{+0.11}_{-0.19}$	$\Lambda_c \pi$	$\Xi_c(2930)^0$	2931 ± 6	36 ± 13	$\Lambda_c \bar{K}, \Sigma_c \bar{K}, \Xi_c \pi, \Xi'_c \pi$
$\Sigma_c(2520)^{++}$	$2518.41^{+0.21}_{-0.19}$	$14.78^{+0.30}_{-0.40}$	$\Lambda_c \pi$	$\Xi_c(2970)^+$	$2966.7\pm0.8^*$	$24.6\pm2.0^*$	$\Sigma_c \bar{K}, \Lambda_c \bar{K} \pi, \Xi_c \pi \pi$
$\Sigma_{c}(2520)^{+}$	2517.5 ± 2.3	< 17	$\Lambda_c \pi$	$\Xi_c(2970)^0$	$2970.6\pm0.8^*$	$29\pm3^*$	$\Sigma_c K, \Lambda_c K \pi, \Xi_c \pi \pi$
$\Sigma_{-}(2520)^{0}$	2518.48 ± 0.20	$15.3^{+0.4}$	$\Lambda_c \pi$	$\Xi_c(3055)^+$	3055.1 ± 1.7	11 ± 4	$\Sigma_c \overline{K}, \Lambda_c \overline{K}\pi, D\Lambda$
Σ (2800) ⁺⁺	2801+4	75+22		$\Xi_c(3055)^0$	3059.0 ± 0.8	6.4 ± 2.4	$\Sigma_c K, \Lambda_c K \pi, D \Lambda$
$\Sigma_c(2000)^+$	2001_{-6}	73_{-17}	$\Lambda_c \pi, \Sigma_c \Lambda, \Lambda_c \pi \pi$	$\Xi_c(3080)^+$	3076.94 ± 0.28	4.3 ± 1.5	$\Sigma_c ar{K}, \Lambda_c ar{K} \pi, D\Lambda$
$\Sigma_c(2800)^+$	2792^{+14}_{-5}	62_{-44}^{+04}	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$	$\Xi_{c}(3080)^{0}$	3079.9 ± 1.4	5.6 ± 2.2	$\Sigma_c \bar{K}, \Lambda_c \bar{K} \pi, D\Lambda$
$\Sigma_{c}(2800)^{0}$	2806^{+5}_{-7}	72^{+22}_{-15}	$\Lambda_c \pi, \Sigma_c^{(*)} \pi, \Lambda_c \pi \pi$	$\Xi_c(3123)^+$	3122.9 ± 1.3	4.4 ± 3.8	$\Sigma_c^*ar{K}, \Lambda_car{K}\pi, D\Lambda$

Mass spectra, widths (in units of MeV), and decay modes of the observed charmed baryons

Mass spectra, widths (in units of MeV), and decay modes of the observed charmed baryons

Within the diquark picture, the mass difference between the corresponding Ξ_c and Λ_c states is about 180~200 MeV, while the corresponding Ξ'_c and Σ_c states is about 120~130 MeV

doublet	S_l^P	J^P	Λ_c (cud)	Ξ_c (csq)	δ_M	
15	0+	$\frac{1}{2}^+$	Λ _c (2286)	Ξ _c (2470)	184	
25	0+	$\left \frac{1}{2}^{+}\right $	Λ _c (2760)	Ξ _c (2970)	200	
1 <i>P</i>	1-	$\frac{1}{2}$	Л _с (2595)	Ξ _c (2790)	200	
		$\frac{3}{2}$	Λ _c (2625)	Ξ _c (2815)	188	
1 <i>D</i>	2+	$\frac{3^+}{2}$	Λ _c (2860)	Ξ _c (3055)	201	
		5 ⁺ 2	Λ _c (2880)	Ξ _c (3080)	198	
2 <i>P</i>	1-	$\frac{1}{2}$				
		$\frac{3}{2}$	Λ _c (2940)	<i>E_c</i> (3123)	184	

$$\begin{split} \delta_{"good"} &= (m_s - m_q) + \frac{3}{4}\lambda; \\ \delta_{"bad"} &= (m_s - m_q) - \frac{1}{4}\lambda; \end{split}$$

$$\begin{split} m_{\Xi_c'(2930)} &- m_{\Sigma_c(2800)} \approx \\ m_{\Xi_c'(2570)} &- m_{\Sigma_c(2455)} \approx \\ m_{\Xi_c'(2645)} &- m_{\Sigma_c(2520)} \approx \\ & 125 \text{ MeV} \end{split}$$

Within the diquark picture, the mass difference between the corresponding Ξ_c and Λ_c states is about 180~200 MeV, while the corresponding Ξ'_c and Σ_c states is about 120~130 MeV

Names	Status	Mass	Width	Names	Status	Mass	Width	ΔΜ
$\Lambda_{c}(2286)^{+}$	* * **	2286.46 ± 0.14	_	$\Xi_c(2468)^0$	* * *	$2470.88^{+0.34}_{-0.80}$	_	$184.42^{+0.37}_{-0.81}$
$\Lambda_c(2595)^+$	* * *	2592.25 ± 0.28	2.6 ± 0.6	$\Xi_c(2790)^0$	* * *	2791.8 ± 3.3	< 12	199.6 ± 3.3
$\Lambda_c(2625)^+$	* * *	2628.11 ± 0.19	< 0.97	$\Xi_c(2815)^0$	* * *	2819.6 ± 1.2	< 6.5	191.5 ± 1.2
$\Lambda_c(2765)^+$	**	$2766.6^{+3.6}_{-7.1}$	≈ 50	$\Xi_c(2980)^0$	* * *	2968.0 ± 2.6	20 ± 7	201.4 ± 3.5
$\Lambda_c(2860)^+$	**	$2856.1^{+3.6}_{-7.1}$	$67.6^{+17.6}_{-29.5}$	$\Xi_c(3055)^+$	**	3054.2 ± 1.3	17 ± 13	198.1
$\Lambda_{c}(2880)^{+}$	* * *	2881.53 ± 0.35	5.8 ± 1.1	$\Xi_c(3080)^0$	* * *	3079.9 ± 1.4	5.6 ± 2.2	198.4 ± 1.4
$\Lambda_c(2940)^+$	* * *	$2939.3^{+1.4}_{-1.5}$	17^{+8}_{-6}	$\Xi_c(3123)^+$	*	3122.9 ± 1.3	4 ± 4	$183.6^{+1.9}_{-2.0}$
$\Sigma_{c}(2455)^{0}$	* * **	2453.74 ± 0.16	2.16 ± 0.26	$\Xi_c'(2578)^0$	* * *	2577.9 ± 2.9		124.2 ± 2.9
$\Sigma_{c}(2520)^{0}$	* * *	2518.8 ± 0.6	14.5 ± 1.5	$\Xi_c^*(2645)^0$	* * *	2645.9 ± 0.5	< 5.5	127.1 ± 0.8
$\Sigma_{c}(2800)^{0}$	* * *	2806^{+5}_{-7}	72^{+22}_{-15}	$\Xi_c'(2930)^0$	*	2931 ± 6	36 ± 13	125^{+8}_{-9}
$\Lambda_{b}(5619)^{0}$	* * *	5619.4 ± 0.6	_	$\Xi_b(5790)^-$	* * *	5791.1 ± 2.2	_	171.7 ± 2.3
$\Lambda_b(5912)^0$	* * *	5912.0 ± 0.6	< 0.66	$\Xi_b(6090)^-$				
$\Lambda_b(5920)^0$	* * *	5919.8 ± 0.8	< 0.63	$\Xi_b(6100)^-$				
$\Sigma_{b}(5815)^{-}$	* * *	5815.5 ± 1.8	$4.9^{+3.3}_{-2.4}$	$\Xi_b'(5935)^-$	**	5935.02 ± 0.53	< 0.08	120.4 ± 3.0
$\Sigma_{b}^{*}(5835)^{-}$	* * *	5835.1 ± 1.9	7.5 ± 2.3	$\Xi_b^*(5955)^-$	* * *	5955.33 ± 0.68	1.65 ± 0.41	120.4 ± 3.0

This observation supports the theory that the diquark production is the main process of charmed baryon production from e^+e^- annihilation and that the diquark structure exists in the ground state and low-lying excited states of Λ_c^+ baryons.

If we assume that two light quarks in the charmed baryon systems develop into a quark cluster, then the mass differences between Ξ_c and Λ_c states can be understood well. In the quark cluster picture (or diquark picture), the degree of freedom of two light quarks in a diquark system is frozen. Only the degree of freedom between the center of mass of two light quarks and the *c* quark can be excited.

Since the oscillator frequencies $\omega_{
ho}$ and ω_{λ} are different in the charmed baryons ($m_Q \gg m_q$)

$$\frac{\omega_{\lambda}}{\omega_{\rho}} = \sqrt{\frac{1}{3} \left(1 + \frac{2m_q}{m_Q} \right)} < 1$$

which indicates that the λ mode excited charmed baryons would have lower excited energies.

$$\begin{array}{c}
q_{1} \quad \rho \quad q_{2} \\
\hline 0 \quad 120^{\circ} \\
\hline \tau \quad 0 \\
\hline 0 \quad 120^{\circ} \\
\hline 0 \\
\hline 0 \\
\hline 120^{\circ} \\
\hline 0 \\
\hline$$

"Assignments of Λ_Q and Ξ_Q baryons in the heavy quark-light diquark picture", <u>Bing Chen</u>, Ke-Wei Wei, and Ailin Zhang

Eur. Phys. J. A **51**, 82 (2015)

In the relativistic flux tube (RFT) model, Selem and Wilczek have obtained the following mass formula,

$$\mathbf{E} = \mathbf{M} + \sqrt{\frac{\sigma L}{2}} + 2^{1/4} \kappa L^{-1/4} \mu^{3/2}$$

A. Selem, F. Wilczek, arXiv:hep-ph/0602128

We have extended equation above to the radial excited heavy baryons as

Chew-Frautschi formula

$$\left(\varepsilon_{nL} - m_Q\right)^2 = \frac{1}{2}\sigma(\kappa n + L) + \left(m_l + \zeta_Q\right)^2$$

where $\zeta_Q = m_Q u_1^2$.

Finally, we added the $\vec{s}_Q \cdot \vec{L}$ couplings term as

$$H_{nL}^{SO} = \frac{1}{3 \times 2^{5/2}} \frac{\alpha_s}{(u_1 + u_2)^3} \left(\frac{\sigma}{\kappa n + L}\right)^{3/2} \frac{1}{m_l m_Q} \,\vec{s}_Q \cdot \vec{L}$$

Bing Chen, Ke-Wei Wei, Ailin Zhang, Results of the excited Λ_c^+ and Ξ_c excited states: Eur.Phys.J. A 51 (2015) 82 $J^P(nL)$ This work Ref. [9] Ref. [50] Exp. [1] $J^P(nL)$ Ref. [50] Exp. [1] This work Ref. [9] Ref. [51] $\frac{1}{2}^{+}$ (1S)2470.88 246724762466 $\frac{1}{2}^{+}$ (1S)2286.86 2286 228622862265 $\frac{1}{2}^+$ (2S)2968.0295929592924 $\frac{1}{2}^{+}$ (2S)2766.62766276927912775 $\frac{1}{2}^{+}$ (3S)3325 3323 [3183] $\frac{1}{2}^{+}$ (3S)3112 3130 3154 3170 $\frac{1}{2}$ (4S)3629 3632 $\frac{1}{2}^{+}$ (4S)3397 3437 $\frac{1}{2}$ 2791.8 277927922773(1P) $\frac{1}{2}$ 2630 (1P)2592.3259125982625 $\frac{3}{2}$ (1P)2819.6 281428192783 $\frac{3}{3}$ (1P)2628.12629262726362640 $\frac{1}{2}$ $\frac{1}{2}$ (2P)3195 3179 (2P)29892983 [2780]3122.92939.3耦合道旋应 $\frac{3}{2}$ $\frac{3}{3}$. (2P)(2P)3204 3201 30003005 [2840] $\frac{1}{2}$ (3P) $\frac{1}{2}$ 35213500 3296 3303 [2830](3P) $\frac{3}{2}$ (3P) $\frac{3}{3}$ 3301 3322 [2885](3P)3525 3519 $\frac{3}{2}^{+}$ (1D)2857 $\frac{3}{2}^{+}$ 28742887 2910(1D)3054.23055 3059 3012 $\frac{5}{2}^{+}$ $\frac{5}{2}^{+}$ (1D)2881.53287928802887 2910(1D)3079.9 3076 3076 3004 $\frac{3}{2}^{+}$ (2D)3188 318931203035 $\frac{3}{2}^{+}$ (2D)3407 3388 $\frac{5}{2}$ + (2D)3198 3209 3125 3140 $\frac{5}{2}$ + (2D)3416 3407 $\frac{5}{2}$ (1F)3075 3097 [2872][2900] $\frac{5}{2}$ (1F)3286 3278 $\frac{7}{2}$ (1F)3092 3078 3125 $\frac{7}{2}$ (1F)3302 3292 $\frac{7}{2}$ + (1G)3267 3270 3175 $\frac{7}{2}^{+}$ (1G)3490 3469 $\frac{9}{2}^{+}$ (1G)3280 3284 $\frac{9}{2}^{+}$ (1G)3503 3483

LHCb Collaboration (R. Aaij (CERN) et al.), JHEP 1705 (2017) 030

Figure 1. Expected spectrum of the Λ_c^+ ground \bigcirc state and its orbital excitations from a study based \bigcirc on the nonrelativistic heavy quark-light diquark model [21], along with the observed resonances corresponding to those states [23].

 $\frac{3^+}{2}$

 $m(\Lambda_c(2860)^+) = 2856.1^{+2.0}_{-1.7}(\text{stat}) \pm 0.5(\text{syst})^{+1.1}_{-5.6}(\text{model}) \text{ MeV},$ $\Gamma(\Lambda_c(2860)^+) = 67.6^{+10.1}_{-8.1}(\text{stat}) \pm 1.4(\text{syst})^{+5.9}_{-20.0}(\text{model}) \text{ MeV}$

Bing Chen, Ke-Wei Wei, Xiang Liu, Takayuki Matsuki, Eur. Phys. J. C **77**, 154 (2017) Bing Chen, Xiang Liu, and Ailin Zhang, Phys. Rev. D **95**, 074022 (2017) Bing Chen, Xiang Liu, Phys. Rev. D **95**, 074022 (2017)

doublet	S _l ^P	J ^P	Λ_c (cud)	Ξ _c (csq)	Λ_b (bud)	Ξ_b (bsq)	comment
15	0+	1/2+	Λ _c (2286)	Ξ _c (2470)	Λ _b (5620)	Ξ _b (5795)	****
25	0+	1/2+	Λ _c (2760)	Ξ _c (2980)			*
1P	1-	1/2-	Л _с (2595)	Ξ _c (2790)	Λ _b (5912)		
		3/2-	Л _с (2625)	Ξ _c (2815)	Λ _b (5920)		***
1D	2+	3/2+	<i>Л_c</i> (2860)	Ξ _c (3055)			
		5/2+	Λ _c (2880)	Ξ _c (3080)			**~***
2P	1-	1/2-					
		3/2-	<i>Л_с</i> (2940)	<i>E_c</i> (3123)			*~**

Bing Chen, Ke-Wei Wei, Xiang Liu, Takayuki Matsuki, Eur. Phys. J. C **77**, 154 (2017) Bing Chen, Xiang Liu, and Ailin Zhang, Phys. Rev. D **95**, 074022 (2017) Bing Chen, Xiang Liu, Phys. Rev. D **95**, 074022 (2017)

For bottom-strange baryons,

Bing Chen, Ke-wei Wei, Xiang Liu, and Ailin Zhang, arXiv:1805.10826

n <i>L</i>	15			1 <i>P</i>					25	
J ^P	1/2+	3/2+	1/2-	1/2'-	3/2-	3/2'-	5/2-	1/2+	3 /2 ⁺	
Σ_c	Σ _c (2455)	Σ _c (2520)				Σ _c (2800)				
Ξ'c	Ξ _c (2570)	Ξ _c (2645)				Ξ _c (2930)				
Ω_c	Ω _c (2700)	Ω _c (2760)	Ω _c (3000)	Ω _c (3090)	Ω _c (3050)	Ω_c (3119)	Ω _c (3066)	Ω _c (3188)		
Σ_b	Σ_b (5815)	Σ _b (5835)								
Ξ_b'	$\Xi_{b}^{\prime}(5935)$	Ξ_{b}^{\prime} (5955)				Ξ_{b}^{\prime} (6227) ⁻				
$\overline{\Omega_b}$	Ω _b (6045)									

Bing Chen, Ke-wei Wei, Xiang Liu, and Ailin Zhang, arXiv:1805.10826

14	-62260 + 20(atat) +	$0.2(aust) + 0.2(\Lambda^0) M$	W						
M	$M = 0220.9 \pm 2.0(\text{stat}) \pm 0.5(\text{syst}) \pm 0.2(\Lambda_b) \text{ MeV},$			Decay channels		Pred	iction	Experiments [PDG	
Γ:	$= 18.1 \pm 5.4(\text{stat}) \pm 1.8$	(syst) MeV.		$\Sigma_b(5815)^-$	$\rightarrow \Lambda_b^0 \pi^-$	5.	.12	4	$.9^{+3.3}_{-2.4}$
6.0			_	$\Sigma_b(5835)^{-1}$	$\rightarrow \Lambda_b^0 \pi^-$	9.	.13	7.5	5 ± 2.3
0.8	Ξ_b	Ξ_b'		$\Xi_{b}^{\prime}(5935)^{-}$	$\to \Xi_b \pi$	0.	.05	< 0.08	3, CL=95%
		38		$\Xi_b^*(5955)^-$	$\to \Xi_b \pi$	1.	.09	1.65	5 ± 0.33
6.6	38	2P							
	2P	1D							
<u>-6.4</u>				Decay	1/	2-	3,	/2-	5/2-
Sec.	1D	28	$\Sigma_b^* \mathbf{K}$	modes	$\Xi_{b0}'(6249)$	$\Xi_{b1}'(6239)$	$\Xi_{b1}'(6244)$	$\Xi_{b2}'(6213)$	$\Xi_{b2}'(6217)$
E	28	1P	$\Sigma_b \mathbf{K}$	$\Lambda_b K$	9.1	×	×	10.2	11.0
$s_{s} 6.2$		$\Xi_b(6227)^-$		$\Xi_b\pi$	0.2	×	×	11.4	11.7
Ма	1P		$-\frac{\Lambda_b \mathbf{K}}{\Xi_k^* \pi}$	$\Xi_{b}^{\prime}(5935)\pi$	×	15.1	0.9	1.0	0.5
6.0			$\Xi_b'\pi$	$\Xi_b^*(5955)\pi$	×	2.0	23.7	1.0	1.7
6.0	- -	$18 - \frac{\Xi_b^*(5955)^-}{2}$	- .	$\Xi_b(6096)\pi$	0.3	0.1	0.1	-	-
		$\Xi_b'(5935)^-$	$= \pm_b \pi$	$\Xi_b(6102)\pi$	0.3	_	0.1	-	-
5.8	$\Xi_b(5795)^-$			Theory	9.9	17.2	24.8	23.6	24.9
				Expt. [9]				18.1 ± 5.1	.4 ± 1.8

The measured branching ratios

Belle [2007] Phys. Rev. Lett. 98, 262001 (2007)	$\frac{B(\Lambda_c(2880) \to \Sigma_c(2520)\pi)}{B(\Lambda_c(2880) \to \Sigma_c(2455)\pi)} = 0.225 \pm 0.062 \pm 0.025;$
BABAR [2008] Phys. Rev. D 77, 012002 (2008)	$\frac{B(\Xi_c(3080) \to \Sigma_c(2520)K)}{B(\Xi_c(3080) \to \Sigma_c(2455)K)} = \frac{0.55 \pm 0.05 \pm 0.05}{0.45 \pm 0.05 \pm 0.05} = 0.82 \approx 1.86;$
Belle [2016] Phys. Rev. D 94 , 032002 (2016)	$\frac{B(\Xi_c(3080) \to \Sigma_c(2520)K)}{B(\Xi_c(3080) \to \Sigma_c(2455)K)} = 1.07 \pm 0.27 \pm 0.04;$
	$\frac{B(\Xi_c(3080) \to \Lambda D)}{B(\Xi_c(3080) \to \Sigma_c(2455)K)} = 1.29 \pm 0.30 \pm 0.15;$
	$\frac{B(\Xi_c(3055) \to \Lambda D)}{B(\Xi_c(3055) \to \Sigma_c(2455)K)} = 5.09 \pm 1.01 \pm 0.76;$

Hai-Yang Cheng, Chun-Khiang Chua, Phys.Rev. D **75** (2007) 014006 Bing Chen, Xiang Liu, and Ailin Zhang, Phys.Rev. D **95**, 074022 (2017) Ya-Xiong Yao, Kai-Lei Wang, Xian-Hui Zhong, arXiv:1803.00364

Summary : success and difficulty

$\Lambda_{c}(2940)^{+}$

states	Expt.	CWLM	EFG	CWZ	CI
2 <i>P</i> , 1/2 ⁻ >		2980	2983	2989	3030
2 <i>P</i> , 3/2 ⁻ >	2939.3	3004	3005	3000	3035

Mass (in MeV)

Some thresholds in an S wave plays an important dynamical role in making the $|2P, 3/2^-\rangle$ state a notable mass shift.

D * p	D * n
2950	2950

So the coupled-channel effects should be considered for the 2P Λ_c^+ states.

Summary : success and difficulty

In the heavy quark-light diquark picture, most of the observed charmed baryon states can be explained including their mass spectrum and strong decays. As discussed above, however, there are some questions which should be investigated deeply.

- (1) The branching ratios of $\Lambda_c(2880)^+$ and $\Xi_c(3080)$ pose challenges to the diquark picture,
- (2) The coupled-channel effects should be studied for the 2P Λ_c^+ states,
- (3) The spin-parity of $\Lambda_c(2760)^+$ [or a $\Sigma_c(2760)^+$ state] and $\Xi_c^{(\prime)}(2980)$ should be measured,
- (4) We may ask why no ρ-mode excited heavy baryon state has been detected by any experiment. If they exist, how are we going to find them?

Thank you !

