

Yu-Jie Zhang

nophy0@gmail.com

School of Physics, Beihang University

CHEP2018 @ SJTU

June 22, 2018

Introduction	The frame of Calculation	$\Upsilon + J/\psi + \phi$ and TPS	Summary
Outline			

- **2** The frame of Calculation
- **3** Numerical Result of $\Upsilon + J/\psi$
- **4** Numerical result of $\Upsilon + J/\psi + \phi$ and triple parton scattering

Introduction Th	he frame of Calculation			ϕ and TPS	Summary
-----------------	-------------------------	--	--	----------------	---------

Introduction

Quarkonium productions

Quarkonium production have been studied by

- Kuang-Ta Chao group
- Yu Jia group
- B. A. Kniehl group
- Cong-Feng Qiao group
- Jian-Xiong Wang group
- **i** ...

Quarkonium productions

NLO J/ψ at LHCb, Chao/Wang/Kniehl, 1506.03981

CO LDMEs, 1212.2037

	Butenschoen,	Gong, Wang,	Chao, Ma,	Shao, Wang, Z	hang ⁵²
	Kniehl ¹⁸	Wan, Zhang ⁵³	default set	set 2	set 3
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle$	$1.32 \ {\rm GeV^3}$	1.16 GeV^3	$1.16 \ { m GeV}^3$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$0.0497~{\rm GeV}^3$	$0.097 \ \mathrm{GeV}^3$	0.089 GeV^3	0	$0.11 \ { m GeV}^3$
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$0.0022 \ \mathrm{GeV^3}$	$-0.0046~{\rm GeV^3}$	$0.0030 \ \mathrm{GeV^3}$	$0.014 \ { m GeV^3}$	0
$\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]})\rangle$	$-0.0161~{\rm GeV^5}$	$-0.0214~{\rm GeV}^5$	$0.0126~{\rm GeV}^5$	$0.054~{\rm GeV^5}$	0
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[1]})\rangle$		$0.758 \ { m GeV}^3$			
$\langle O^{\psi'}({}^{1}S_{0}^{[8]})\rangle$		$-0.0001~{\rm GeV}^3$			
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[8]})\rangle$		$0.0034 \ \mathrm{GeV^3}$			
$\langle \mathcal{O}^{\psi'}({}^{3}P_{0}^{[8]})\rangle$		$0.0095~{\rm GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3P_0^{[1]})\rangle$		$0.107 \ { m GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3S_1^{[8]})\rangle$		$0.0022~{\rm GeV^3}$			

Double J/ψ at CMS, 1404.4042

Double J/ψ at CMS, 1410.8822

Double J/ψ , **1410.8822**

	Energy and quarkonium cuts	$\sigma_{\rm exp.}$	$\sigma_{\rm LO}^{\rm SPS, prompt}$	$\sigma_{\rm NLO^{(\star)}}^{\rm SPS, prompt}$	$\sigma^{\mathrm{DPS, prompt}}$	χ^2
LHCb	$\sqrt{s} = 7$ TeV, $P_T^{\psi_{1,2}} < 10$ GeV, $2 < y_{\psi} < 5$ [34]	18 ± 5.3 pb	$41^{+51}_{-24}\ pb$	46 ⁺⁵⁸ ₋₂₇	$31^{+11}_{-6.3}(^{+24}_{-15})\ pb$	0.5 - 1.2
D0	$\sqrt{s} = 1.96 \text{ TeV}, P_T^{\psi_{1,2}} > 4 \text{ GeV},$	SPS: 70 ± 23 fb	$53^{+57}_{-27} \ fb$	$170^{+340}_{-110} \ fb$	-	-
20	$ \eta_{\psi} < 2.0$ [12] (+ μ cuts in caption)	DPS: 59 ± 23 fb	-	-	$44^{+16}_{-9.1}(^{+7.5}_{-5.1})~{\rm fb}$	0.06 - 0.5
CMS	$\sqrt{s} = 7$ TeV, $P_T^{\psi_{1,2}} > 6.5 \rightarrow 4.5$ GeV depending on $ y_{\psi_{1,2}} \in [0, 2.2]$ (see the caption) [35]	5.25 ± 0.52 pb	$0.35^{+0.26}_{-0.17} \ pb$	$1.5^{+2.2}_{-0.87} \ pb$	$0.69^{+0.24}_{-0.14}(^{+0.039}_{-0.027}) \ pb$	1.09 - 1.14
ATLAS	$\sqrt{s} = 7 \text{ TeV}, P_T^{\psi_{1,2}} > 5 \text{ GeV and } y_{\psi_{1,2}} < 2.1 (+ \mu \text{ cuts in the caption}) [48]$	-	$6.4^{+4.3}_{-2.6}\ fb$	$36_{-20}^{+49} \; \rm fb$	$19^{+6.8}_{-4.0}(^{+2.2}_{-1.6})~{\rm fb}$	N/A

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

1
$$J/\psi + W$$
 and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- 2 $J/\psi + charm$ and $\Upsilon + charm$ (LHCb, arXiv:1205.0975, 1510.05949)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- 2 $J/\psi + charm$ and $\Upsilon + charm$ (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)

Many quarkonium associated production processes seems to be dominant by Double-Parton Scattering (DPS).

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)
- **3** $\Upsilon + J/\psi$ (D0, arXiv:1511.02428)

Double parton scattering and Single parton scattering

SPS and DPS

Figure: SPS and DPS of $pp \rightarrow J/\psi + \Upsilon + X$.

Triple parton scattering

TPS

Figure: TPS of $pp \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

The cross sections and σ_{eff}^{nPS} (1708.07519)

The cross sections of *n*-particle associated production

Then we can get

$$\sigma_{hh'\to a_1\dots a_n}^{nPS} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh'\to a_1}^{SPS} \cdots \sigma_{hh'\to a_n}^{SPS}}{\left(\sigma_{eff}^{nPS}\right)^{n-1}},$$
(1)

 $\sigma_{\rm eff}^{\rm nPS}$

$$\left(\frac{1}{\sigma_{\text{eff}}^{n\text{PS}}}\right)^{n-1} = \int d^2 b \, T^n(\mathbf{b}) \tag{2}$$

$\sigma_{\rm eff}^{\rm DPS}$ (arXiv:1608.01857)

σ_{eff}^{DPS} (arXiv:1608.01857)

Prompt $J/\psi + \Upsilon$ @ D0

Prompt $J/\psi + \Upsilon(1S, 2S, 3S)$ **@ D0 (arXiv:1511.02428)**

$$\sigma_{D0}^{J/\psi+\Upsilon} = 27 \pm 9 \pm 7 \text{ fb}$$

Ignore the SPS contribution

$$\sigma_{DPS}^{J/\psi+\Upsilon} = \sigma_{D0}^{J/\psi+\Upsilon} = \frac{\sigma^{J/\psi}\sigma^{\Upsilon}}{\sigma_{eff}}$$
(4)

 $\sigma_{\rm eff}$

$$\sigma_{\rm eff} = 2.2 \pm 0.7 \pm 0.9 \ {\rm mb}$$

Quarkonium associated production and MPI

(3)

(5)

The distribution of the azimuthal angle between the $J/\psi + \Upsilon$

Color-Singlet contributions of $J/\psi + \Upsilon$

Color-Singlet contributions

Unlike J/ψ -pair or Υ -pair production, neither $\mathcal{O}(\alpha_S^4)$ nor $\mathcal{O}(\alpha_S^5)$ contributions survive in Color-Singlet Model (CSM).

The approximated Loop-Induced (LI) contribution

The approximated Loop-Induced (LI) contribution in CSM at $\mathcal{O}(\alpha_S^6)$ was estimated in Ref. (arXiv:1503.00246) with in the specific limit $\hat{s} \gg |\hat{t}| \gg m_{\psi,\Upsilon}^2$, where \hat{s} and \hat{t} are the Mandelstam variables.

Color-Octet contributions of $J/\psi + \Upsilon$

Color-Octet contributions

The process is a golden observable to probe the so-called Color-Octet Mechanism (COM) (arXiv:1007.3095)

Color-Octet contributions at $\sqrt{s} = 115$ GeV

The Color Octet (CO) contribution were predicted for AFTER@LHC energies $\sqrt{s} = 115 \text{ GeV}$ (arXiv:1504.06531) with HELAC-Onia (arXiv:1212.5293, 1507.03435).

Hadroproduction of $\Upsilon + J/\psi$

SPS contributions were absence

However, the exact calculations of the complete SPS contributions were absence in the literature.

First complete study of $\Upsilon + J/\psi$

We present the first complete study of the simultaneous production of prompt ψ and Υ mesons by including all leading contributions, at order $\mathcal{O}(\alpha_S^6)$ or equivalent.

Introduction	The frame of Calculation		$\Upsilon + J/\psi + \phi$ and TPS	Summary
--------------	--------------------------	--	------------------------------------	---------

The frame of Calculation

Cross sections

Hadron and Parton level cross sections

$$\sigma(h_1 h_2 \to \mathcal{C} + \mathcal{B} + X) = \sum_{a,b} f_{a/h_1} \otimes f_{b/h_2}$$
$$\otimes \hat{\sigma}(ab \to \mathcal{C} + \mathcal{B} + X).$$
(6)

Parton level cross section

$$d\hat{\sigma}(ab \rightarrow \mathcal{C} + \mathcal{B} + X) = \sum_{n_1, n_2} \hat{\sigma}(ab \rightarrow c\bar{c}[n_1] + b\bar{b}[n_2] + X)$$
$$\langle O^{\mathcal{C}}(n_1) \rangle \langle O^{\mathcal{B}}(n_2) \rangle$$
(7)

Matrix elements

Fock States Of J/ψ

$$\begin{aligned} |J/\psi\rangle &= \mathcal{O}(1)|c\bar{c}(^{3}S_{1}^{[1]})\rangle + \mathcal{O}(v_{c}^{2})|c\bar{c}(^{3}S_{1}^{[8]})gg\rangle \\ &+ \mathcal{O}(v_{c}^{2})|c\bar{c}(^{3}P_{J}^{[1,8]})g\rangle + \mathcal{O}(v_{c}^{2})|c\bar{c}(^{1}S_{0}^{[8]})g\rangle + \dots \end{aligned}$$

Introduction	The frame of Calculation	$\Upsilon + J/\psi + \phi$ and TPS	Summary
QED			

lpha	\sim	0.008	
α_{S}	\sim	$\sqrt{\alpha}$	(9)

Introduction	The frame of Calculation	$\Upsilon + J/\psi + \phi$ and TPS	Summary
$\mathcal{O}(\alpha_{S}^{6})$			

Color Singlet

The $\mathcal{O}(\alpha_S^4)$ and $\mathcal{O}(\alpha_S^5)$ contributions to $\Upsilon + \psi$ direct production in CSM vanish because of P-parity and C-parity conservation.

Color Octet

$$\mathcal{O}(\alpha_{\mathcal{S}}^{4} v_{c}^{i} v_{b}^{j}) \leq \mathcal{O}(\alpha_{\mathcal{S}}^{6})$$
 with $i + j \geq 4$

EW

$$\mathcal{O}(\alpha_{\mathcal{S}}^2 \alpha^2) \leq \mathcal{O}(\alpha_{\mathcal{S}}^6)$$
 with $i + j \geq 4$

Feeddown for $\chi_{c,b}$

$$\mathcal{O}(\alpha_{S}^{4} v_{c}^{i} v_{b}^{j}) \leq \mathcal{O}(\alpha_{S}^{6})$$
 with $i + j \geq 4$

Feynman Diagram of SPS

FD

NRQCD

Introduction The frame of Calculation	$\Upsilon + J/\psi$	$\Upsilon + J/\psi + \phi$ and TPS	Summary
---------------------------------------	---------------------	------------------------------------	---------

Numerical Result of $\Upsilon + J/\psi$

Direct SPS cross sections @ D0 in fb

		J/ψ	$\psi(2S)$
	$\Upsilon(1S)$	$3.58^{+233\%}_{-66.4\%} \pm 4.4\%$	$2.34^{+233\%}_{-66.4\%} \pm 4.4\%$
DR	$\Upsilon(2S)$	$1.78^{+233\%}_{-66.4\%} \pm 4.4\%$	$1.17^{+233\%}_{-66.4\%} \pm 4.4\%$
	$\Upsilon(3S)$	$1.36^{+233\%}_{-66.4\%}\pm4.4\%$	$0.894^{+233\%}_{-66.4\%}\pm4.4\%$
	$\Upsilon(1S)$	$56.2^{+264\%}_{-70.2\%} \pm 4.7\%$	$36.8^{+264\%}_{-70.2\%} \pm 4.7\%$
LI	$\Upsilon(2S)$	$28.0^{+264\%}_{-70.2\%} \pm 4.7\%$	$18.4^{+264\%}_{-70.2\%} \pm 4.7\%$
	$\Upsilon(3S)$	$21.4^{+264\%}_{-70.2\%} \pm 4.7\%$	$14.0^{+264\%}_{-70.2\%} \pm 4.7\%$
	$\Upsilon(1S)$	$15.8^{+75.4\%}_{-46.4\%} \pm 4.6\%$	$10.4^{+75.4\%}_{-46.4\%} \pm 4.6\%$
\mathbf{EW}	$\Upsilon(2S)$	$7.90^{+75.4\%}_{-46.4\%} \pm 4.6\%$	$5.18^{+75.4\%}_{-46.4\%} \pm 4.6\%$
	$\Upsilon(3S)$	$6.04^{+75.4\%}_{-46.4\%} \pm 4.6\%$	$3.96^{+75.4\%}_{-46.4\%} \pm 4.6\%$
	$\Upsilon(1S)$	$-16.6^{+162\%}_{-62.0\%}\pm4.8\%$	$-10.9^{+162\%}_{-62.0\%}\pm4.8\%$
INTER	$\Upsilon(2S)$	$-8.29^{+162\%}_{-62.0\%} \pm 4.8\%$	$-5.43^{+162\%}_{-62.0\%} \pm 4.8\%$
	$\Upsilon(3S)$	$-6.34^{+162\%}_{-62.0\%}\pm4.8\%$	$-4.15^{+162\%}_{-62.0\%}\pm4.8\%$
	$\Upsilon(1S)$	$409^{+138\%}_{-56.7\%} \pm 4.4\%$	$174^{+138\%}_{-56.8\%} \pm 4.4\%$
COM	$\Upsilon(2S)$	$135^{+139\%}_{-57.0\%} \pm 4.4\%$	$57.6^{+139\%}_{-57.1\%} \pm 4.4\%$
	$\Upsilon(3S)$	$197^{+137\%}_{-56.6\%} \pm 4.4\%$	$84.1^{+138\%}_{-56.7\%} \pm 4.4\%$

Summary

SPS cross sections @ D0 & LHCb

Experiment	CSM			COM				
	DR	LI	EW	INTER	Set I	Set II	Set III	Set IV
D0: $27 \pm 42.2\%$	$0.0146^{+233\%}_{-66.6\%}$	$0.229^{+264\%}_{-70.4\%}$	$0.065^{+75.5\%}_{-46.6\%}$	$-0.068^{+162\%}_{-62.2\%}$	$2.96^{+135\%}_{-56.2\%}$	$1.41^{+160\%}_{-77.6\%}$	$1.80^{+143\%}_{-58.0\%}$	$0.418^{+144\%}_{-58.3\%}$
LHCb	$0.255^{+391\%}_{-79.7\%}$	$6.05^{+436\%}_{-82.2\%}$	$1.71^{+135\%}_{-65.2\%}$	$-3.23^{+262\%}_{-75.9\%}$	$38.8^{+238\%}_{-73.0\%}$	$21.2^{+243\%}_{-73.6\%}$	$28.1^{+243\%}_{-73.8\%}$	$6.57^{+243\%}_{-73.9\%}$

TABLE III: Cross sections $\sigma(pp(\bar{p}) \rightarrow J/\psi\Upsilon) \times Br(J/\psi \rightarrow \mu^+\mu^-)Br(\Upsilon \rightarrow \mu^+\mu^-)$ (in units of fb) of prompt J/ψ and $\Upsilon(1S, 2S, 3S)$ simultaneous production at the Tevatron in the D0 fiducial region [10] and at $\sqrt{s} = 13$ TeV LHC in the LHCb acceptance $2 < y_{J/\psi,\Upsilon} < 4.5$, where we have also included feeddown contributions from higher-excited quarkonia decay.

dphi @ D0

dphi @ LHCB

Introduction	The frame of Calculation		$\Upsilon + J/\psi + \phi$ and TPS	Summary
--------------	--------------------------	--	------------------------------------	---------

SPS cross section of Υ , J/ψ , ϕ at LHCb

Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb is 0.2, 15, 600 μ b for $p_T(\phi) > 2$ GeV.

SPS cross section of Υ , J/ψ , ϕ at LHCb

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb is 0.2, 15, 600 μ b for $p_T(\phi) > 2$ GeV.
- 2 With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma}[\Upsilon]\sigma[J/\psi] \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

SPS cross section of Υ , J/ψ , ϕ at LHCb

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb is 0.2, 15, 600 μ b for $p_T(\phi) > 2$ GeV.
- With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma[\Upsilon]\sigma[J/\psi]} \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

SPS cross section of Υ , J/ψ , ϕ at LHCb

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb is 0.2, 15, 600 μ b for $p_T(\phi) > 2$ GeV.
- With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma}[\Upsilon]\sigma[J/\psi] \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

3 DPS $\Upsilon + J/\psi + \phi$: about $3 \times \sigma^{SPS} [\Upsilon + J/\psi] \frac{\sigma[\phi]}{\sigma_{eff}^{DPS}} \sim 1.4 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{DPS} \sim 10 \text{ mb}.$

SPS cross section of Υ , J/ψ , ϕ at LHCb

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at LHCb is 0.2, 15, 600 μ b for $p_T(\phi) > 2$ GeV.
- With the NLO(LO) LDMEs, $\sigma^{SPS}[\Upsilon + J/\psi] \sim 8(24)$ pb, then $\sigma^{SPS}[\Upsilon + J/\psi] \sim \sqrt{\sigma}[\Upsilon]\sigma[J/\psi] \times \alpha_s^3$ and $\alpha_s \sim 0.16(0.23)$ (1605.03061).

3 SPS
$$\Upsilon + J/\psi + \phi$$
: $\mathcal{O}(\alpha_s^9)$, very small.

OPS Υ + J/ψ + φ: about 3 × σ^{SPS}[Υ + J/ψ] σ[φ]/σ^{DPS}/σ^{dFS}/σ^{eff} ~ 1.4 pb for p_T(φ) > 2 GeV and σ^{DPS}_{eff} ~ 10 mb.
 TPS Υ + J/ψ + φ: about σ^(Υ)/σ^(J/ψ)/σ^(Φ)/σ^(Φ) ~ 28 pb for

$$p_T(\phi) > 2 \text{ GeV} ext{ and } \sigma_{ ext{eff}}^{TPS} \sim 8 ext{ mb.}$$

Estimate the number of events

●
$$Br[\Upsilon(J/\psi) \rightarrow \mu^+\mu^-] = 0.024(0.06)$$
 and
 $Br[\phi \rightarrow K^+K^-] = 0.5.$

Estimate the number of events

■
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and
 $Br[\phi \to K^+K^-] = 0.5.$

Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.

Estimate the number of events

■
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and $Br[\phi \to K^+K^-] = 0.5.$

Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.

Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 80.

Estimate the number of events

■
$$Br[\Upsilon(J/\psi) \to \mu^+\mu^-] = 0.024(0.06)$$
 and $Br[\phi \to K^+K^-] = 0.5$.

2 Integrated luminosity of LHCb is about 4 fb⁻¹ at $\sqrt{s} = 13$ TeV.

- Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 80.
- We can introduce cut to suppress SPS and DPS contributions.

SPS cross section of Υ , J/ψ , ϕ at CMS/Atlas

Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.
- SPS and DPS are very small.

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{TPS} \sim 8 \text{ mb}.$

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.
- SPS and DPS are very small.
- 3 TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{eff}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{eff}^{TPS} \sim 8 \text{ mb}.$
- Integrated luminosity of CMS/Atlas is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{\text{eff}}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{\text{eff}}^{TPS} \sim 8 \text{ mb}.$
- Integrated luminosity of CMS/Atlas is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.
- Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 6000.

- Inclusive cross sections of Υ , J/ψ , ϕ at $\sqrt{s} = 13$ TeV at CMS/Atlas, it 0.4, 30, 1200 μ b for $p_T(\phi) > 2$ GeV.
- SPS and DPS are very small.
- Solution TPS $\Upsilon + J/\psi + \phi$: about $\frac{\sigma[\Upsilon]\sigma[J/\psi]\sigma[\phi]}{(\sigma_{\text{eff}}^{TPS})^2} \sim 200 \text{ pb}$ for $p_T(\phi) > 2 \text{ GeV}$ and $\sigma_{\text{eff}}^{TPS} \sim 8 \text{ mb}.$
- Integrated luminosity of CMS/Atlas is about 40 fb⁻¹ at $\sqrt{s} = 13$ TeV.
- Solution Number of events for $\Upsilon(\mu^+\mu^-) + J/\psi(\mu^+\mu^-) + \phi(K^+K^-)$ with $p_T(\phi) > 2$ GeV is about 6000.
- We can introduce cut to suppress SPS and DPS contributions.

Introduction	The frame of Calculation	$\Upsilon + J/\psi + \phi$ and TPS	Summary
Summary			

We have performed the first complete analysis of simultaneous production of prompt ψ and Υ mesons including all leading SPS contributions.

Our work shows that it is in fact most probably dominated by DPS contributions for D0 data.

Finally, we show that $\Upsilon + J/\psi + \phi$ at LHC is dominated by TPS. It may be studied by experimenters.

Introduction The frame of Calculation $\Upsilon + J/\psi$		$+ \phi$ and TPS	Summary
---	--	------------------	---------

Introduction The frame of Calculation $\Upsilon + J/\psi$		$+ \phi$ and TPS	Summary
---	--	------------------	---------

Multi parton scattering

The inclusive cross section to produce *n* hard particles in hadronic colliders is a convolution of generalized *n*-parton distribution functions (PDF) and elementary partonic cross sections summed over all involved partons,

$$\sigma_{hh' \to a_{1}...a_{n}}^{\text{NPS}} = \left(\frac{m}{n!}\right) \sum_{i_{1},..,i_{n},i_{1}',..,i_{n}'} \int \Gamma_{h}^{i_{1}...i_{n}}(x_{1},..,x_{n};\mathbf{b}_{1},..,\mathbf{b}_{n};Q_{1}^{2},..,Q_{n}^{2}) \\
\times \hat{\sigma}_{a_{1}}^{i_{1}i_{1}'}(x_{1},x_{1}',Q_{1}^{2}) \cdots \hat{\sigma}_{a_{n}}^{i_{n}i_{n}'}(x_{n},x_{n}',Q_{n}^{2}) \\
\times \Gamma_{h'}^{i_{1}'...i_{n}'}(x_{1}',...,x_{n}';\mathbf{b}_{1}-\mathbf{b},...,\mathbf{b}_{n}-\mathbf{b};Q_{1}^{2},...,Q_{n}^{2}) \\
\times dx_{1}...dx_{n} dx_{1}',...,dx_{n}' d^{2}b_{1},...,d^{2}b_{n} d^{2}b.$$
(10)

The *n*-parton distribution function (1708.07519)

It encodes all the 3D structure information of the hadron.

 Assumption 1: the n-PDF are factored in terms of longitudinal and transverse components,

$$\Gamma_{h}^{i_{1}...i_{n}} = D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2})f(\mathbf{b_{1}})...f(\mathbf{b_{n}})$$
(11)

- We can get hadron-hadron overlap function $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} \mathbf{b}) d^2 b_1$, where $1 = \int T(\mathbf{b}) d^2 b$.
- Assumption 2: the longitudinal components reduce to the product of independent single PDF

$$D_h^{i_1...i_n}(x_1,...,x_n;Q_1^2,...,Q_n^2) = D_h^{i_1}(x_1;Q_1^2)\cdots D_h^{i_n}(x_n;Q_n^2)$$
 (12)