Jet substructure in heavy-ion collisions

Tan Luo Central China Normal University Institute of Particle Physics

In collaboration with Shanshan Cao, Yayun He, Guang-You Qin and Xin-Nian Wang

Outline

Introduction

- A Linear Boltzmann Transport (LBT) model
- Jet modification in heavy ion collisions

• Summary and Outlook

Introduction

Jets in heavy ion collisions

What are in the background of a reconstructed jet?

Introduction

The jet shape and transverse momentum imbalance in **Dijet** events

A Linear Boltzmann Transport (LBT) Model

$$p_1 \bullet \partial f_1(x_1, p_1) = E_1(C_{elastic} + C_{inelastic})$$

Jet induced medium excitation

Linear Approximation

It works when the jet induced medium excitation $\delta f << f$.

Linear Boltzmann jet Transport

Elastic collision + Induced gluon radiation.

Follow the propagation of recoiled parton.

Back reaction of the Boltzmann transport. ("Negative" parton for the back reaction)

Complete set of elastic processes

$$\stackrel{\mathbf{k}}{\frown} i, j = g, u, d, s, c, b, \overline{u}, \overline{d}, \overline{s}, \overline{c}, \overline{b}$$

Jussi Auvinen, Kari J. Eskola, Thorsten Renk Phys.Rev. C82 024906

Г

• Scattering rate for a process $ij \rightarrow kl$ in the local rest frame of the fluid

$$\begin{split} &\Gamma_{ij \to kl} = \frac{1}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} \times f_j(p_2 \cdot u, T) \\ &\times \left| M \right|^2_{ij \to kl} (s, t, u) \times S_2(s, t, u) \times (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P_4) \\ &S_2(s, t, u) = \theta(s \ge 2\mu_D^2) \theta(-s + \mu_D^2 \le t \le -\mu_D^2) \qquad \mu_D^2 = (\frac{3}{2}) 4\pi\alpha_s T^2 \end{split}$$

• The mean free path

$$\Gamma_{i} = \sum_{j,(kl)} \Gamma_{ij \to kl} = 1/\lambda_{0} \qquad P(\Delta t) = 1 - e^{-\Gamma_{i}\Delta t} \qquad P(ij \to kl) = \frac{\Gamma_{ij \to kl}}{\Gamma_{i}}$$

Medium-induced gluon radiations

Radiated gluon distribution: Guo and Wang (2000), Majumder (2012); Zhang, Wang and Wang (2004)

$$\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2C_A \alpha_s P(x)k_{\perp}^4}{\pi (k_{\perp}^2 + x^2 M^2)^4} \hat{q} \sin^2 \frac{t - t_i}{2\tau_f}$$

$$\tau_f = 2Ex(1-x) / (k_{\perp}^2 + x^2 M^2)$$

Multiple gluon emissions:
$$P(N_g, \langle N_g \rangle) = \frac{\langle N_g \rangle^{N_g} e^{-\langle N_g \rangle}}{N_g!}$$

Induced radiations are accompanied by elastic collisions.

Jet medium Interaction:

Y. He, T. Luo, X. N. Wang and Y. Zhu, PhysRevC.91.054908

Jets in a 3+1D hydro

Gamma-jet energy loss

Gamma-jet Luo, Cao, He & XNW, arXiv:1803.06785

• The only parameter effective strong coupling constant α_s is fixed. (fix the strength of jet-medium interaction)

Jet shape of gamma-jet in heavy-ion collisions

Jet shape of gamma-jet in heavy-ion collisions

Jet substructure (jet grooming)

Groomed jet splitting function

• The inclusion of the recoil (medium response) will lead to stronger modification of the groomed jet splitting function.

Groomed jet mass

• The inclusion of recoiled partons will lead to the enhancement of the large groomed mass tail.

Beyond LBT model (modified medium background)

- Linear approximation : jet induced medium excitation $\delta f << f$.
- Jet-Medium interaction : Where is the modification of the thermal background ?
 Modified medium background

CoLBT-hydro (A coupled LBT Hydro (3+1D) Model)

Summary

- We present a computation of jets modification in QGP within the Linear Boltzmann Transport (LBT) model in which both the elastic and inelastic processes are included.
- We find it is crucial to include medium response to describe the modification of jet structure in heavy ion collisions.

Outlook

- Jet in hadron level. (Hardon jet, Heavy flavor jet) (with the recombination model developed by Texas A&M group)
- Heavy quarkonium.
- JETSCAPE

Thanks

pT distribution of gamma-jet in heavy-ion collisions

Shift of the peak of the pt distribution

Path length dependence of the energy loss

Luo, Cao, He & XNW, arXiv:1803.06785

Azimuthal distribution of gamma-jet in heavy-ion collisions

Luo, Cao, He & XNW, arXiv:1803.06785

Energy distribution of the recoiled parton

Single scattering

Dominance of small angle scattering.

Switch of flavor and species of the leading parton.

Y. He, T. Luo, X. N. Wang and Y. Zhu, PhysRevC.91.054908

Energy distribution of the radiated gluon

Global energy-momentum conservation in 2->3 and 2->n processes

Luo, Cao, He & XNW in preparation

Jet induced medium excitation (Energy distribution in space)

Initial jet parton: gluon E = 100 GeVT = 0.4 GeV $\alpha_s = 0.3$

 Mach Cone like wave and the diffusion wake.

Elastic only

gluon: elastic only at t=6 fm/c

Elastic + Radiation

gluon: elastic + radiation at t=6 fm/c

(c) t=6 fm/c

Jet induced medium excitation (Angular distribution)

t = 2 *fm* t = 4 fmt = 6 fm 0.5 (a) t = 2 fm/c(c) t = 6 fm/c(b) t = 4 fm/c0.4 0.81.5 gluon gluon gluon 0.3 0.6 w/o rad w/o rad. w/o rad 0.2 0.4 0.5 0.1 0.2∮D/Nb ∮D/Nb ∮D/Nb Elastic only -0.2 -0.1 -0.: -0.2 $-1 < p_T < 2 \text{ GeV}$ -0.4 $-1 < p_T < 2 \text{ GeV}$ $-1 < p_T < 2 \text{ GeV}$ $-2 < p_T < 3 \text{ GeV}$ $2 < p_T < 3 \text{ GeV}$ $-2 < p_T < 3 \text{ GeV}$ -0.6 -0.3 $-3 < p_{_{T}} < 4 \text{ GeV}$ $-3 < p_{_{T}} < 4 \text{ GeV}$ $-3 < p_T < 4 \text{ GeV}$ -1.5 -0.8 -0.4 -0.5 -1 2 -3 -23 -3 -2 2 3 2 (a) t = 2 fm/c(b) t = 4 fm/c(c) t = 6 fm/cgluon gluon 10 gluon 3 w. rad. w. rad. w. rad. ∮D/Nb ∮D/Nb ∮D/Nb Elastic + Radiation -1 $-1 < p_{_{\rm T}} < 2 \text{ GeV}$ -2 $-1 < p_T < 2 \text{ GeV}$ $-1 < p_T < 2 \text{ GeV}$ $2 < p_T < 3 \text{ GeV}$ $2 < p_T < 3 \text{ GeV}$ $-2 < p_T < 3 \text{ GeV}$ -3 -10 $-3 < p_{_{\rm T}} < 4 \text{ GeV}$ $-3 < p_T < 4 \text{ GeV}$ $-3 < p_T < 4 \text{ GeV}$ 2 3 -3 -2 2 3 2 _2 1 _3 -3 24

Jet reconstruction on hadron level with recombination model

Han, Fries and Ko, Phys. Rev. C93 (2016) 045207

Jet induced medium excitation: recoiled parton

- Leading parton-----thermal parton scattering
- recoiled parton----thermal parton scattering

Linearized Boltzmann jet transport

neglect scatterings between recoiled medium partons.

It's a good approximation when the jet induced medium excitation $\delta f << f$.

Jet induced medium excitation: particle hole

One has to subtract the 4-momentum of negative particle when combine it to jet

Jet induced medium excitation: back reaction

thermal parton----thermal parton scattering

the negative particle is also traveling in the medium

One has to subtract the 4-momentum of negative particle when combine it to jet

Jet induced medium excitation (Energy distribution at different time)

Initial jet parton: gluon E = 100 GeV T = 0.4 GeV $\alpha_s = 0.3$

• Depletion of the energy of the leading parton.

Elastic + *Radiation*

Jet energy loss

• Single jet *R_{AA}*

The only parameter effective strong coupling constant α_s is fixed. (fix the strength of jet-medium interaction)

- Fluctuation effect (solid vs dotted)
- Recoiled effect (black vs blue)
- Back reaction effect (red vs blue)

Hadron R_{AA} in heavy ion collision

 Simultaneous description of single hadron R_{AA} from RHIC to LHC (AuAu@200GeV, PbPb@2760GeV and PbPb@5020GeV, 2 centrality bins for each system, 6 data sets in total)

Jet substructure

Jet grooming $z_{g} \equiv \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \left(\frac{\Delta R}{R_{0}}\right)^{\beta}$ $\frac{M_{g}}{p_{T}^{jet}} = \frac{\sqrt{(E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}}}{p_{T}^{jet}}$ Measured anti-k_T jet Measured anti-k_T jet Continue until branching passes Schematic sketch from A. Larkoski LPC Workshop JetMET Jan. 2014

Groomed Jet splitting function (pp)

Groomed jet mass (pp)

Energy loss from radiation process in an uniform medium

 Energy of the leading parton is recovered at each time step in MC to compare with the semi-analytical calculation. (a crosscheck of the MC implementation in LBT)

S. Cao, T. Luo, G. Y. Qin and X. N. Wang, Phys. Rev. C 94, no. 1, 014909 (2016).

Gamma-jets in a 3+1D hydro

• 3+1D Ideal hydro Longgang Pang, Qun Wang, Xin-Nian Wang Phys.Rev. C86 (2012) 024911

- Location of gamma-jet is decided according probability of binary collision.
- Small difference between parton-jet and hadron-jet.

Nontrivial path length dependence on parton energy loss

Leading parton energy loss

Propagation of a single initial jet parton in a uniform medium

 $\alpha_s = 0.3$ E = 100 GeV T = 0.4 GeV

Path length dependence on parton energy loss

Leading jet energy loss

• Leading jet recover some of the energy lost by the leading parton.

Initial jet parton: gluon

Initial jet parton: quark

Jet shape of leading jet in heavy-ion collisions

Jet shape of leading jet in heavy-ion collisions

Energy flow in gamma-jets events

Energy flow in dijet events

pT imbalance of dijet in heavy-ion collisions

