

Non-prompt D⁰ measurement in Au+Au collisions at 200 GeV

Xiaolong Chen University of Science and Technology of China

CHEP 2018, Jun. 19-24

- Motivation
- STAR detector
- Analysis strategy
 - Particle identification and D⁰ reconstruction
 - Prompt and non-prompt D⁰ separation
- Results and discuss
- Summary and outlook

$D^0 R_{AA}$ and v_2

- Similar energy loss for light partons and charm quarks at high pT
- Evidence of charm quarks flowing as light quarks
- Charm quarks interact strongly with the Quark-Gluon Plasma (QGP)

CHEP 2018

What about b-hadron

- Energy loss mechanisms in QGP
 - elastic collisions with the plasma constituents
 - gluon radiating
 - expected $\triangle E(c) > \triangle E(b)$
- b-hadron properties

- $F(B^+) = 4.8 \times 10^{-3} (B^+ \to \overline{D^0} \pi^+) \times 0.0389 (D^0 \to K^- \pi^+) = 1.87 \times 10^{-4}$
- study the inclusive decays B->D (one example), others are B->J/psi, B->e etc
- decay length: B+~491µm, D⁰~123µm

STAR detector

USTC/LBNL

2

Particle identification

TPC PID $n\sigma_{X} = \frac{1}{R_{dE/dx}} \ln \frac{\langle dE / dx \rangle^{Mea}}{\langle dE / dx \rangle_{X}^{Bichsel}}$ $|n\sigma_{\pi}| < 3$ $|n\sigma_{K}| < 2$

TOF PID Hybrid: use TOF when TOF available

$$\left| \frac{1}{\beta} - \sqrt{m_{\pi}^2 / p^2 + 1} \right| < 0.03$$
$$\left| \frac{1}{\beta} - \sqrt{m_{K}^2 / p^2 + 1} \right| < 0.03$$

D⁰ reconstruction

DCA template of prompt and non-prompt D⁰

- Obtained from Data Driven Fast Simulation including detector effects: tracking efficiency, HFT matching ratio, DCA resolution, momentum resolution, etc
- B-meson and D^0 -meson p_T shapes are from FONLL
- All decay channels to D⁰ for B⁰ and B[±] are included (PYTHIA version 6.416)
- Relative contributions of B[±], B⁰ to non-prompt D⁰ are fixed using fragmentation and branch ratio listed in the following table

Particle	c τ(μm)	$Mass(GeV/c^2)$	$q(c, b) \rightarrow X(FR)$	$X \to D^0(\overline{D^0})(BR)$
D ⁰	123	1.865	0.565	_
B ⁰	459	5.279	0.40	0.081(0.474)
B ⁺	491	5.279	0.40	0.086(0.790)

Template fitting

- DCA < 0.006 cm: raw yield from mass fitting
- DCA 0.006-0.08 cm: background estimated using unlike-sign distribution in the side band regions

Efficiency correction

Jump at 5 GeV due to topological cuts changing $Ratio_effCorr = \frac{Ratio(B)/eff(B)}{Ratio(B)/eff(B) + Ratio(D)/eff(D)}$

Xiaolong Chen

USTC/LBNL

Non-prompt D⁰ fraction and R_{AA}

- Non-prompt $D^0 R_{AA}$: FONLL as the pp baseline
- Non-prompt D⁰ production at $5 < p_T < 8$ GeV/c in Au+Au collisions is suppressed
- Hint of non-prompt D⁰ is less suppressed

Summary

- Non-prompt D⁰ fraction and R_{AA} are obtained at p_T range of 3-8 GeV/c with STAR run year 2014 data
- Non-prompt D⁰ is suppressed at p_T range of 5-8 GeV/c
- Hint of non-prompt D⁰ R_{AA} is less suppressed at lower p_T

Outlook

- Cuts tuning for non-prompt D⁰ with TMVA::BDT method
- Run14 ~0.9B events + Run16 ~1.4B events
- Down to p_T range of 2-3 GeV/c