Topological Cut Optimization for Λ_c Reconstruction Using the Supervised Machine Learning Algorithm in TMVA at STAR Chuan Fu (Central China Normal University) for the STAR Collaboration

Outline

Motivation

 $> \Lambda_c$ Decay Topology

>TMVA-Boosted Decision Trees

 $> \Lambda_c$ Reconstruction Results

>Summary

Motivation

→ With the dataset of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV recorded by STAR experiment at RHIC in 2014, $\Lambda_c^+(\overline{\Lambda_c})$ signals were successfully reconstructed through the hadronic decay channel ($\Lambda_c^+ \rightarrow \pi Kp$).

Motivation

> A strong enhancement of Λ_c/D^0 compared to PYTHIA values is observed.

- Ko model including coalescence of thermalized charm quarks is consistent with data.
- > Measurements of Λ_c production with better precision require further topological cut optimization.

Λ_c Decay Topology

Constituent quarks	udc(ūd̄c)	
сτ	60 μm	
Mass	2286 MeV/c ²	
Right-sign	$K^+\pi^-\overline{p}$, $K^-\pi^+p$	
Wrong-sign	K ⁺ π ⁺ p̄, K ⁻ π ⁻ p̄, K ⁺ π ⁻ p, K ⁺ π ⁺ p, K ⁻ π ⁻ p, K ⁻ π ⁺ p̄	

Cut variables used for TMVA-BDT: daughter pion, Kaon and proton DCA to the primary vertex, DCA between daughters, $\cos\theta$ (θ is shown on the right picture), Decay Length of Λ_c .

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

TMVA-Boosted Decision Trees

A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis, PoS ACAT 040 (2007), arXiv:physics/0703039

BDT Training and Cut

 $> \Lambda_c$ signal sample is from simulation (EvtGen + data-driven fast simulator). Background sample is from experimental data.

Left: one half of the sample was used for the training (symbols) and the other was used to perform the over-training test (curves). -> Consistent with each other: no over-training.

Right: significance as a function of the BDT response (green line) after BDT training.

Λ_c Reconstruction Results

>2014 data, ~ 900 M events: Λ_c candidates from right-sign combination (solid symbols) and background from wrong-sign (open symbols).

Raw yield and significance are calculated within
3 sigma range by bin counting.

Compared to the result using the TMVA-Rectangular Cut method, the TMVA-BDT method increases the significance by about 50%.

The signal number remains the same but background is suppressed by a factor of 4 with TMVA-BDT.

$p_{T}% \left(\mathbf{T}_{T}^{T}\right) = \mathbf{T}_{T}^{T}\left(\mathbf{T}_{T}^{T}\right) = \mathbf$

	Range	Rectangular Cut	BDT
Significance	3 <p<sub>T<4 GeV/c, 10-60%</p<sub>	4.5	6.7
Significance	4 <p<sub>T<6 GeV/c, 10-60%</p<sub>	4.0	4.2
Significance	3 <p<sub>T<6 GeV/c, 10-40%</p<sub>	4.1	6.6
Significance	3 <p<sub>T<6 GeV/c, 40-80%</p<sub>	4.5	5.1

Latest Λ_c/D^0 from STAR

- A strong enhancement of Λ_c/D⁰ compared to PYTHIA values is observed. The enhancement increases as p_T decreases.
- Coalescence model predictions are closer to data, but the observed enhancement is larger than that predicted by models, particularly at higher p_T.
- Ratio not described by Statistical Hadronization Model prediction.

Summary

Extraction of Λ_c signal from Au+Au data has been optimized using the TMVA-Boosted Decision Trees method in different centrality and p_T bins.

> Compared to the TMVA-Rectangular Cut method, the TMVA-BDT method improves the signal significance for Λ_c by up to 60% depending on p_T and centrality.

The strong enhancement of Λ_c/D^0 compared to PYTHIA is consistent with coalescence hadronization of deconfined charm quarks in the medium.