

Exotic hadron searches at LHCb

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences

On behalf of the LHCb collaboration

第十届全国高能物理大会,2018年6月20日-24日,上海

LHCb detector

> Forward spectrometer @ collider, acceptance: 1.9<η<4.9

LHCb operation status

> Wonderful performance with the LHCb detector

> In total, we have already collected 7 fb⁻¹ data (1 fb⁻¹ with 7 TeV, 2 fb⁻¹ with 8 TeV and 4 fb⁻¹ with 13 TeV)

> Expect 2 fb⁻¹ more data in 2018

➤ More than 90% overall efficiency

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2017

Fundamental questions about QCD

> Theory of the strong interaction between quarks and gluons

$$\mathcal{L}_{ ext{QCD}} = ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

Three colors Color confinement Asymptotic freedom

> Particles formed by quarks and gluons: a more complicated system than that of leptons (i.e. electron + positron) \rightarrow quark model

> Quark model: a simple but successful model, lots of questions still unanswered How quarks forms particles?

Gluon balls or tetra-quark or pentaquark states or hybrids?

How quarks are grouped inside particles?

.....

What are contributions of Parton properties to particle properties (i.e. spin etc)

> Search for exotic states may shed light on these questions

X,Y,Z States explanation

Pentaquark

H-dibaryon

Tetraquark

magenta-cyan-yellow color-singlet 5-q state

magenta-cyan-yellow color-singlet 6-q state

magenta-green color-singlet 4-q state

Hybrid

Light exotic searches: $f_0(500)$ and $f_0(980)$

> No light exotic states confirmed yet

> The mesons $f_0(500)$ and $f_0(980)$ could be a $q\overline{q}$ or compact $qq\overline{qq}$ state state

> LHCb studies properties of $f_0(500)$ and $f_0(980)$ using B decays: $B_{(s)} \rightarrow J/\psi \pi \pi$ and $B \rightarrow \overline{D}^0 \pi \pi$

2-q model

 $|f_0(980)\rangle = |\bar{s}s\rangle \cos\theta + |\bar{n}n\rangle \sin\theta,$ $|f_0(500)\rangle = -|\bar{s}s\rangle \sin\theta + |\bar{n}n\rangle \cos\theta.$

PRL 111(2013) 062001

PRD 90 (2014) 012003

 $|f_0(500)\rangle = |\bar{u}u\bar{d}d\rangle$ $|f_0(980)\rangle = |\bar{n}n\bar{s}s\rangle$

 $|f_0(980)\rangle = |\bar{n}n\bar{s}s\rangle\cos\phi + |\bar{u}u\bar{d}d\rangle\sin\phi,$ $|f_0(500)\rangle = -|\bar{n}n\bar{s}s\rangle\sin\phi + |\bar{u}u\bar{d}d\rangle\cos\phi,$

> Mixing angles of 2-q and 4-q model given as a function of form factor ratios

≻ Results from $B_s^0 \rightarrow \overline{D}^0 f_0(980)$, $B^0 \rightarrow \overline{D}^0 f_0(980)$ and $B^0 \rightarrow \overline{D}^0 f_0(500)$ indicate complicated nature of the system

> More complicated when including J/ψ system into analysis

Understanding X(3872): production EPJC 72 (2012) 1972

> Best studied exotic meson candidates: an example on how we understand exotics

> Current understanding: containing mixture from $\chi_{c1}(2P)$

> The first exotic found to be produced promptly

May have compact components

c \bar{c} MESONS PDG (including possibly non- $q \bar{q}$ states) $\chi_{c1}(3872)$ $I^G(J^{PC}) = 0^+(1^{++})$

also known as X(3872)

> LHCb has measured its production at 7 TeV, not distinguishing prompt and secondary

> Further analyses are ongoing with much more data using pp collisions

Studies with p-Pb, Pb-Pb collisions in the future are also quite interesting

Understanding X(3872) : J^{PC}, mass and width

Spin-parity has been set to 1⁺⁺ combining efforts from LHCb and Belle > Mass very close to $D^0 \overline{D}^{*0}$ threshold, motivates further precise measurement

 $E_b = 11 \pm 146 \,\mathrm{keV}/c^2$

➤ Current width consistent with zero, but data now have sensitivity to that, would be good to think about how to model the lineshape

Understanding X(3872): decays

> X(3872) mainly decays to $J/\psi\rho(770)$, $J/\psi\omega(782)$ and $D^0\overline{D}^{*0}$, like loosely bounded molecular

Evidence seen in Babar not in Belle

LHCb confirms it with 4.4 σ , and demonstrates it has contributions of $\chi_{c1}(2P)$

$$R_{\psi\gamma} = \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

Four exotics in one channel PRD 95 (2017) 012002 PRL 118 (2017) 022003

> Disagreement on the existence of X(4140) observed from $B^+ \to (J/\psi\phi) K^+$ decay using naïve 1D fit from different experiments

> Careful 6D amplitude analysis firmly confirms its existence with precise measurements on its mass and width; it gives three more exotic states

TPC	37(4140)	TC (AOTA)	Tr (AFOO)	V(1700)
J^{r}	X(4140)	X(4274)	X(4500)	X(4700)
0^{++}	10.3σ	7.8σ	preferred	preferred
0^{-+}	12.5σ	7.0σ	8.1σ	8.2σ
1^{++}	preferred	preferred	${f 5.2\sigma}$	4.9σ
1^{-+}	10.4σ	${f 6.4}\sigma$	6.5σ	8.3σ
2^{++}	7.6σ	7.2σ	5.6σ	6.8σ
2^{-+}	9.6σ	6.4σ	6.5σ	6.3σ

X(4140) slightly better with cusp X(4274) significantly worse with cusp

11

 \succ Clearly harder to explain 4 exotics at one go \rightarrow a model killer

➤ A first try to not only use "normal" RBW but also use models like cusp in the analysis → close collaboration with theorists well motivated

Confirmation of Z(4430)

PRL 112 (2014) 222002

> While it is not easy to distinguish neutral tetraquark candidates from $c\overline{c}$ or $b\overline{b}$ states, charged candidates are smoking gun for being tetraquarks

> First charged candidates Z(4430) by Belle, and then followed by many others from BESIII

> A long saga on the existence of Z(4430): first seen by Belle in 1D mass Fit of $m(\psi'\pi)$ from $B^0 \rightarrow \psi' K \pi$; but not confirmed by Babar; 1D or 2D analysis not enough

> LHCb confirms its existence without doubt using its unprecedent data sample with 4D amplitude analysis

Properties of Z(4430)

PRL 112 (2014) 222002

> First time the resonant behavior of tetra-quark candidates shown on Argand plot without any assumption on its lineshape

Including systematic variations:

➤ A model-independent method also developed to confirm the existence of Z(4430)

> The spin-parity of Z(4430) also determined to be 1⁺

	Rejection level relative to 1*		
Disfavored J ^P	LHCb	Belle	
0-	9.7σ	3.4σ	
1-	15.8σ	3.7σ	
2+	16.1σ	5.1σ	
2-	14.6σ	4.7σ	

The pentaquarks

PRL 115 (2015) 072001

> A nature extension of the search is to see if we have pentaquark states

➤ A "complicated" 6D amplitude analysis is essential

> Understanding further their properties is clearly key elements for the following studies $\begin{array}{ccc}
P_{c}(4380)^{+}: & 4380 \pm 8 \pm 29 \text{ MeV} \\
& 205 \pm 18 \pm 86 \text{ MeV} \\
P_{c}(4450)^{+}: 4449.8 \pm 1.7 \pm 2.5 \text{ MeV} \\
& 39 \pm 5 \pm 19 \text{ MeV} \end{array} \qquad \textbf{4.1\%}$

Massive production

 $J^{P} = (3/2^{-}, 5/2^{+})$ aso possible $(3/2^{+}, 5/2^{-}), (5/2^{+}, 3/2^{-})$

Exotics with four different flavors

> Exotic states with four different quark flavors clearly different from those observed before, possible candidates: $D_{s1}(2317)$ and X(5568)

But the continuing search of these kind of exotics is very interesting

 $m(J/\psi \Lambda K^{-5800})$ [MeV/c²]

Other possible exotic searches

> Exotics with more than one charge?

> Exotics with a $\overline{b}c$ quark?

> A sexaquark or di-baryon

> Exotics with more than 2 heavy quarks or with *bb* or *cc*? (PRL 119 (2017) 202001, PRD 96 (2017) 074004)

➤ Long lived exotics? For example, *uuddss* in arXiv: 1708.08951

The future

> Clearly hard to predict future, but we will have much more data

