

Strangeness production in jets and the underlying event in pp, p-Pb and Pb-Pb collisions with ALICE

Pengyao Cui (for the ALICE Collaboration) Central China Normal University 06/22/2018

Motivation

- Enhancement of Λ/K_S^0 ratio observed at intermediate p_T at high multiplicity in pp, p-Pb and Pb-Pb collisions w. r. t that at low multiplicity
- Production of multi-strange particle increases with multiplicity
 - > The similarity behavior among different systems

ALICE

Nature Phys. 13 (2017) 535-539

This analysis

Jets provide a nature reference to separate particles produced in hard processes and underlying events→further constraints on particle production mechanisms in different systems

> pp

- ✓ Study the jet fragmentation properties in vacuum
- ✓ Provide reference for p-Pb and Pb-Pb systems

> p-Pb

✓ Have a new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

> Pb-Pb

 ✓ Study medium modified jet fragmentation and potential constraint on jet-medium excitation

• Underlying event

- PC: cone in perpendicular direction of jet axis
- OC: out side the jet cone
- > NJ : events without jet in p_T larger than a given threshold

ALICE setup and data sample

• Data sample

pp collisions at 13 TeV, p-Pb collisions at 5.02 TeV, and Pb-Pb collisions at 2.76 TeV

• Strangeness reconstruction

- \succ K⁰_S \rightarrow π^+ + π^- (BR 69.2%)
- $\succ \Lambda \rightarrow p + \pi^- (BR 63.9\%)$

 $\succ \Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^- (BR 63.9\%)$

• **TPC**(**Time Projection Chamber**)

- ▷ |η|<0.9</p>
- Charged particle tracking
- Particle identification

• ITS(Inner Tracking System)

- \succ $|\eta| < 0.9$
- Vertex reconstruction
- Event trigger

• **V0A** + **V0C**

- \blacktriangleright 2.8<η<5.1 and -3.7<η<-1.7
- Event multiplicity class determination
- Event trigger

• Jet reconstruction:

- > Charged track selection: $|\eta| < 0.9$, $p_{\rm T} > 0.15 \text{ GeV}/c$
- > Jet finder: anti $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

Results of pp collisions

- The production density of strangeness in jets is harder than that in underlying events
- The UE is harder than inclusive distribution the presence of the jet biases on UE

ΑΙ

Results of pp collisions

- The Λ/K_S^0 in UE is consistent with the inclusive ratio
- The ratio in jets is clearly different from the inclusive ratio at low and intermediate $p_{\rm T}$
- Further constrain on particle production mechanism in jets and UE by extending the study to multi-strange particle sector
- Ξ/Λ is almost p_T independent in JE

Results of pp collisions

- The Λ/K_S^0 in UE is consistent with the inclusive ratio
- The ratio in jets is clearly different from the inclusive ratio at low and intermediate $p_{\rm T}$
- A slight increase of the ratio in jets with increasing R_{jet} and collision energy

- The Λ/K_S^0 in UE is consistent with the inclusive ratio
- The ratio in jets is clearly different from the inclusive ratio at low and intermediate $p_{\rm T}$
- A slight increase of the ratio in jets with increasing R_{jet} and collision energy
- pp consistent with p-Pb within uncertainties in R = 0.4

Results of p-Pb collisions

- The ratios depend only slightly on the jet resolution parameter R and do not vary with $p_{\rm T}^{\rm jet,ch}$
- They are compatible with PYTHIA8 predictions in pp collisions
- The data shown hints of the modification for baron to meson ratio

Results of Pb-Pb collisions

- Interesting aspects seen at low $V^0 p_T$ in comparison with PYTHIA
- The ratio in jets is far below the inclusive ratio in Pb–Pb collisions
- The ratio in jets are similar to the pp collisions or predicted by PYTHIA8 calculations

Summary

- ▶ Production of V⁰s (K⁰_S and Λ) and Ξ has been investigated in jets and the UE in pp collisions at 13 TeV
- > The first look at $\Xi^{-}(\overline{\Xi}^{+})$ production and the Ξ/Λ ratio in jet and the UE in pp collisions with ALICE
- Baryon to meson ratio enhancement not present when the particles are in coincidence within a jet in pp,
 p-Pb and Pb-Pb collisions systems

Summary

- ▶ Production of V⁰s (K⁰_S and Λ) and Ξ has been investigated in jets and the UE in pp collisions at 13 TeV
- > The first look at $\Xi^{-}(\overline{\Xi}^{+})$ production and the Ξ/Λ ratio in jet and the UE in pp collisions with ALICE
- Baryon to meson ratio enhancement not present when the particles are in coincidence within a jet in pp,
 p-Pb and Pb-Pb collisions systems

Thanks

Backup

Analysis strategy

- Tag the hard scattering with charged particle jets (in $p_T^{jet} > 10 \text{ GeV}/c$)
- Reconstruct V⁰s (Λ and K⁰_S) and Ξ within the "jet region"

 $> R(V^0/\Xi, jet) < R_{match}$

- UE background: reconstruct V⁰s and Ξ within the UE region
 - PC: cone in perpendicular direction of jet axis
 - ➢ OC: out side the jet cone
 - > NJ : events without jet in $p_{\rm T}$ larger than a given threshold

Normalization

 $\frac{d\rho}{dp_{\rm T}} = \frac{1}{N_{ev}} \times \frac{1}{<{\rm Area}>} \times dN/dp_{\rm T}$

- Efficiency correction
- Feed-down correction (for $\Lambda(\overline{\Lambda})$)

V⁰s and **E** reconstruction

Channels

- $\succ K_{\rm S}^0 \rightarrow \pi^+ + \pi^- ({\rm BR}\ 69.2\%)$
- $\succ \Lambda \rightarrow p + \pi^- (BR 63.9\%)$

 $\succ \Xi^- \rightarrow \Lambda + \pi^- \rightarrow p + \pi^- + \pi^- (BR 63.9\%)$

•Strategy: based on decay topology selections

•Acceptance: $|\eta| < 0.75$

$V^0(\Xi)$ candidates selection

Selection	Value
Track Kink index	<1
$ \eta $	<0.8
TPC refit flag	kTRUE
Number of findable cluster	>0
Number of TPC Crossed Rows	>70
TPC crossed rows/findable ratio	>0.8

Selection cuts for daughter tracks

Selection	value
V ⁰ s 2D decay radius	in [0.5, 200] cm
Negative track DCA to PV	>0.05 cm
Positive track DCA to PV	>0.05 cm
DCA between V ⁰ s daughters	<1.0 cm
$\cos \theta_{pointing}$	$>0.97 { m K}_{ m S}^{0}, >0.995 { m \Lambda}$
Competing V ⁰ s rejection	$\begin{split} M_{\Lambda} - 1.115683 &> 0.003 \text{ GeV}/c(\text{K}_{\text{S}}^{0}) \\ M_{\overline{\Lambda}} - 1.115683 &> 0.003 \text{ GeV}/c(\text{K}_{\text{S}}^{0}) \\ M_{K_{\text{S}}^{0}} - 0.4968 &> 0.010 \text{ GeV}/c(\Lambda) \end{split}$

Selections	Value
V0Radius	> 1.4
V0CPA	> 0.97
DCAV0Daus	< 1.6
DCAPosTrk	> 0.04
DCANegTrk	> 0.04
LaMassWind	< 0.006
XiRadius	> 0.8
XiCPA	> 0.98
DCAV0toBach	< 1.6
DCAV0toPV	> 0.07
DCABachTrk	> 0.05

Selection cuts for Ξ candidates

Selection cuts for V^0 candidates

Bin counting method

- Raw yield of the $V^0(\Xi^{\pm})$ is extracted by using bin counting method
 - > Fit Inv.Mass distribution with Gaussian plus a liner function in each $p_{\rm T}$ bin
 - Extract the mean value(μ) and the σ of the Gaussian function
 - Define side bands and the signal region
 - > Fit with liner function from side bands and interpolate into signal region
 - Subtract the background in the signal region

V⁰(Ξ) jets matching

- Jet reconstruction:
 - > Charged track selection: $|\eta| < 0.9$, $p_{\rm T} > 0.15 \,{\rm GeV}/c$
 - > Jet finder: anti $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$, $p_{\rm T}^{\rm jet} > 10 \,{\rm GeV}/c$
- $V^0(\Xi^{\pm})$ -jets matching
 - → $R(V^0/\Xi, jet) < 0.4$
- Normalization

$$\ge \frac{d\rho}{dp_{\rm T}} = \frac{1}{N_{ev}} \times \frac{1}{\langle \text{Area} \rangle} \times \frac{dN}{dp_{\rm T}}$$

- UE estimators
 - ➢ PC : perpendicular cone
 - ► OC : $R(V^0/\Xi, jet) > 0.6$
 - > NJ : events w/o jet in $p_{\rm T} > 5 \text{ GeV/c}$

$\mathbf{JE} = \mathbf{JC} - \mathbf{UE}$

Efficiency correction

• Efficiency definition:

$$\epsilon = \frac{N_{reco+asso}}{N_{gen}}$$

- The same signal extraction apart from PID cut as for real data has been used also for MC. The V⁰s(E) and their daughters was identified by using MC truth information. The check for *IsPhysicalPrimary()* has been also performed.
- > For the denominator all generated physical primary particles after event selection have been selected.
- Efficiency of V⁰s/ Ξ inside and outside jets: controlled by the jet modified η -distribution accounted for by reweighing with η -distributions of V⁰s/ Ξ

Feed-down correction

We scaled MC production to the data measurement to estimate kinematics distribution of the feed-down Λ and then we implement the subtraction

• Inclusive

 \blacktriangleright Subtract the feed-down V⁰s according to the measured feed-down fraction before efficiency

 $\Lambda_{\text{measured}}^{\text{raw}} = \Lambda_{\text{primary}}^{\text{raw}} + \Lambda_{\text{secondary}}^{\text{raw}}$

$$\Lambda_{\text{sec}}^{\text{raw}} = \sum_{i} F_{ij} \int_{p_{\text{T}}(bin)} \frac{dN}{dp_{\text{T}}} (\Xi) \left(F_{ij} = \frac{N_{reco}(\Lambda)_{from \,\Xi \, bin \, j}^{in \, bin \, i}}{N_{gen}(\Xi)_{\Xi \, bin \, j}} \right)$$

• JC

- \blacktriangleright Apply the efficiency correction for both JC and UE V⁰s
- \succ Subtract the normalized UE component form the JC V⁰s
- \succ Subtract the feed-down V⁰s matched with jets according to the measured feed-down fraction

$$\Lambda_{JC} = \Lambda_{JE}^{prim} + \Lambda_{JE}^{sec} + \Lambda_{UE}^{prim} + \Lambda_{UE}^{sec}$$

$$\Lambda_{\rm JE}^{\rm sec} = \sum_{j} F_{ij} \int_{p_{\rm T}(bin)} \frac{dN}{dp_{\rm T}} (\Xi) \left(F_{ij} = \frac{N_{gen}(\Lambda)_{from\,\Xi\,bin\,j}^{in\,bin\,i}}{N_{gen}(\Xi)_{\Xi\,bin\,j}} \right)$$

Systematic uncertainty

• Uncertainty on signal extract

- > Single V^0s/Ξ analysis: varying the correlated selection cuts
- > Feed-down correction: obtained from the spectra of Ξ
- Uncertainty on jet $p_{\rm T}$ scale and UE
 - > Jet $p_{\rm T}$ threshold:
 - Estimated from jet background fluctuations and detector response
 - > Variation of the jet $p_{\rm T}$ threshold within 1 GeV/*c*
 - > **UE background subtraction** (to be further studied and updated):
 - Central value: estimated from the PC background
 - Lower/upper limits: given by the OC/NJ backgrounds

• Other sources of uncertainties: material budget — 4%

Results of p-Pb collisions

ALICE