

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

The R&D, Mass Production of the 20 inch MCP-PMT for Neutrino Detector

Sen Qian (钱 森), On Behalf of the MCP-PMT Workgroup

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn

2018.06.22

中国物理学会高能物理分会第十届全国会员代表大会暨学术年会

Outline

- The New Design of the PMT;
- **2.** The MCP-PMT prototypes (2011-2015);
- **> 3.** The Mass production Line and Batch test;

The new design of the MCP-PMT for Neutrino Detector

~20,000 pic 20 inch PMTs

> Daya Bay Experiment

~3,000 pic 8inch PMTs

1.0 the requirement for PMTs of the Liquid Scintillator Detector

	KamLAND	JUNO	Improved factor
Liquid Scintillator	~1 kt	~20 kt	X 20
Energy Resolution	6%/√E	3%/√E	X 2
Light yield	250 p.e./MeV	1200 p.e./MeV	X 2
Number of 20 inch PMTs	2000	20000	X 10
Photocathode Coverage	34%	> 75%	X 2
PMT glass	normal glass	low radioactivity	
QE of the PMT	~20%	30%	
CE of the PMT	~70%	100%	
DE of the PMT	~14%	~30%	X 2
P/V of SPE	> 2	> 4	

Requirement: High QE 20 inch PMT;Good SPE detection capability;Wide dynamic range;Low radioactive background;More than 20 years lifetime;Can withstand 0.4MPa Pressure;> 20000 pieces;

2009: Design; 2011: Collaboration; 2012: DayaBay result; 2013: JUNO

1.1 New type of PMTs under-development in ~2009

Reflective photocathode by UC Davis, Higher QE

Large Area picosecond photo detectors(LAPPD)

Dynode replaced by Scintillator/APD

Hamamatsu Production: X-HPD, 8" and 13"; 18KV HV

TV, LED, OLED: change the Electron to Light

PMT: change the Light to Electron

20 inch MCP-PMT

1.2 the primary design of the MCP-PMT in 2009

 $PD = QE_{Trans} *CE + TR_{Photo}QE_{Ref} *CE = 30\% *70\% + 40\% *30\% *70\% = 30\%$ Photon Detection Efficiency: 15% \rightarrow 30% ; ×~2 at least !

1.3 the large area MCP-PMT Patent

1.4 Project team and Collaborators

effort by Yifang Wang;

Institute of High Energy Physics, CAS

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

> 1.6 The Large PMT evaluation Lab

工欲善其事必先利其器 = Work must first of its profits

- ◆Location : underground of the MainBuilding;
- ◆Function: Four Dark Room
 - Lab1: longtime aging test;
 - Lab2: QE for PMT, PD, MPPC, Si-PMT;
 - Lab3: Timing for PMT, PD, MPPC, Si-PMT;

IKI

Lab4: Geomagnetic field test for PMTs;

The parameters of the MCP-PMT (testing in Lab)

- Anode Pulse Rise Time;
- Pre/Late/After Pulse;
- Dark Count
- The Single Photoelectron Spectrum;
 The violtence distribution (DASE) is
- The voltage distribution (BASE) ;
- The Supply voltage;
- Typical Gain Caracteristic;
- Anode Dark Current
- >Spectral Response;
- Wavelength of Maximum Response;
 Cathode Sensitivity: Luminous(2856K);
 Quantum efficiency with λ
- Photocathode efficiency Area;
 Photocathode efficiency Uniform;
 The position of the Sb, K, Cs;
- The linearity of the PMT
 Magnetic characteristics;
 Transit Time Spread (FWHM)

TTS of the Prototype

QE of the Photocathode

Relative Collection Efficiency

Outline

- The New Design of the PMT;
- **2.** The MCP-PMT prototypes (2011-2015);
- **> 3.** The Mass production Line and Batch test;

2.0 The R&D plan of MCP-PMT (Roadmap — time) (2009)

5" MCP-PMT 2010年

2.1 First 5"prototypes without SPE -- 2011

The photoelectron spectrum of a prototype: 5" IHEP-MCP-PMT

MPE vs the luminance of the LED light

**--adjust the working voltage of the LED to adjust the luminance of the LED light.

2.2 First 8"prototypes without SPE--2012

2.3 8"prototypes with normal performance--2013

2.4 20"prototypes with normal performance--2014

> 2.5 The High PDE MCP-PMT--2015

• 2014: 1st 20" prototype, with normal performance

⇒ QE ~ 25%@410nm; CE ~ 60%; P/V of SPE > 2

• 2015: 20" prototypes with normal performance

⇒ QE ~ 26%@410nm; CE ~ 100%; P/V of SPE > 3

> The performance of the 20 inch prototypes

Chanastanistias		MCP-PMT	R12860	
Characteristics		(IHEP+NNVT)	(Hamamatsu)	
Electron Multiplier		МСР	Dynode	
Photocathode mode		reflection+ transmission	transmission	
Quantum Efficiency (400nm)	%	26 (T), 30 (T+R)	30(T)	
Relativity Detection Efficiency	%	~ 100%	~ 90%	
P/V of SPE		> 3	> 3	
TTS on the top point	ns	~12	~3	
Rise time/ Fall time	ns	R~2 , F~10	R~7 , F~17	
Anode Dark Count	Hz	~30K	~30K	
After Pulse Time distribution	us	4.5	4, 17	
After Pulse Rate	%	3	10	
Glass		Low-Potassium Glass	HARIO-32	

Outline

- The New Design of the PMT;
- **2.** The MCP-PMT prototypes (2011-2015);
- **> 3.** The Mass production Line and Batch test;

3. The Mass production Line and Batch test system

The MCP-PMT products

3.0 the 75% order of PMT for JUNO (2015)

Specification in the Contracts

Characteristics	unit	MCP-PMT (NNVC)	R12860 (Hamamatsu)
Detection Eff.(QE*CE*area)	%	27%, > 24%	27%, > 24%
P/V of SPE		3.5, > 2.8	3, > 2.5
TTS on the top point	ns	~12, < 15	2.7, < 3.5
Rise time/ Fall time	ns	R~2 , F~12	R~5, <7; F~9, <12
Anode Dark Count	Hz	20K, < 30K	10K, < 50K
After Pulse Rate	%	1, <2	10, < 15
Radioactivity of glass	ppb	238U:50 232Th:50 40K: 20	238U:400 232Th:400 40K: 40

15000 MCP-PMT (75%) Contract for JUNO Signed with NNVT on Dec.16, 2015 **3.1 The celebration for the 20 inch MCP – PMT production line** (2016)

- 2 units were working already in 2015; +
- 6 units were ready on the summer 2016; \bigwedge
- 14 units were ready on the winter 2016;

One Unit could produce 3PMTs in Two days;

- —> 22 Units for the mass production ;
- ----> 33 PMTs / 1 day ;

Aim: 1PMT need 2 days total 33 pic/ day; 30 pic PMTs (OK!) /day **3.2 The Batch test platform** (2016. 10–2017. 02)

Batch Test

Dark Count

A: will be test 100% one by one;
B: will be test 10%~20%, part of them. Equipment: 2 pic;
Time: 0.5h / PMT;

≻One Day: 30 PMTs;≻Test Ratio: 100%;

SPE-MPE

VME Test

SPE DE

TTS,APR

SPE Batch Test sub-system

Data Base

Linearity

≻Equipment: 2+1 Dark Room;

- -> 1 dark room = 32 PMTs
- ≻One Day: 30 PMTs;
- ➤Test Ratio: 100%;

20 inch Micro-channel Plate Photomultiplier Tube International Evaluation on 28th.May 2017

—> The production line and testing procedures and equipment are world-class with unique capabilities.

—> The design of the MCP-PMT has acquired a patent of invention and intellectual property rights. The MCP-PMT Review Committee

	Name .	Company	Signature
Chairman	Weiguo Li	IHEP	uleigno <
Member	Paolo Lombardi	INFN	Pou shi
Member	Bayarto Lubsandorzhiev	INR	Juns-
Member	Demarteau Marcel	ANL	Hennet
Member	Gioacchino Ranucci	INFN	Groome grani
Member	Zizong Xu	USTC	7765
Member	Jiawen Zhang	IHEP	级影文

3.4 The transport by road for the MCP-PMT to JUNO

Status	Times	Date	Pics
finish-336	1	2017.5.15	336
finish-648	2	2017.6.14	312
finish-1008	3	2017.7.4	360
finish-1344	4	2017.7.26	336
finish-1680	5	2017.8.24	336
finish-2016	6	2017.9.12	336
finish-2351	7	2017.9.25	336
finish-2687	8	2017.10.09	336
finish-3023	9	2017.10.26	336
finish-3360	10	2017.11.08	336
finish-3696	11	2017.11.22	336
finish-4031	12	2017.12.21	335
finish-4366	13	2018.01.21	336
finish-4703	14	2018.02.23	337
finish-5040	15	2018.03.08	336
finish-5376	16	2018.04.09	336
finish-5712	17	2018.05.22	336
-6048	18	2018.06.25	336

3.5 the MCP-PMT parameters Test in NNVT for JUNO

PMT Parmaeters	JUNO Contract	data in Contract	NNVT test	Prototype	4000 mass production in NNVT	1000 BatchTest by JUNO
单波长QE@410nm	Α	≥ 26.5%	Α	~ 26%	29.2%	_
均匀性(QE Uniformity)	В	≤ 10%	Α	≤ 10%	7.6%	7%
频谱响应曲线(QE-λ)	В	300nm ~ 650 nm	B(50%)	300nm ~ 650 nm	300nm ~ 650 nm	—
单光子探测(SPE-P/V)	Α	≥ 2.8	Α	~ 5.6	6.9	6.7
能量分辨率(SPE-ER)	Α	≤ 40%	Α	~ 41%	33.1%	32.7%
增益(Gain)	Α	1E+07	Α	1E+07	1E+07	1E+07
高压(HV)	Α	≤ 2800V	Α	~ 1780V	1743V	1810V
探测效率(DE)	В	≥ 24%	Α	~ 26%	29.3% @405nm	27.3% @420nm
暗计数率(DR)	Α	≤ 30KHz	Α	~ 30KHz	39.8 KHz	23.4 KHz
渡越时间涨落(TTS)	В	≤ 15ns	Α	~12ns	20.2ns	22.6ns
后脉冲率(APR)	В	≤ 5%	Α	~ 2.5%	0.7%	0.4%
非线性(Linearity)<10%	В	≥ 1000pe	Α	~ 1000pe	1285pe	-
信号波形(RT)	Α	≤ 2ns	Α	~ 1.2ns	1.4 ns	1.4ns
信号波形(FT)	Α	≤ 12ns	Α	~10.2ns	25 ns	25.4ns

A: will be test 100% one by one; B: will be test 10%~20%, part of them.

Overview of the Design and Production of the MCP-PMT

Thanks for your attention! Any comment and suggestion are welcomed!