Measurement of Higgs decaying to tau leptons with ATLAS run-2 data

中国物理学会高能物理分会 第十届全国会员代表大会暨学术年会 Shanghai Jiao Tong University, Jun. 19-24, 2018

$H \rightarrow \tau \tau$ from Run-1

Run-2 event preselection

$ au_{ m lep}$	$\tau_{\rm lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$		
eelµµ	eμ				
$N_{e/\mu}^{\text{loose}} = 2, L$	$N_{\tau_{\text{had-vis}}}^{\text{loose}} = 0$	$N_{e/\mu}^{\text{loose}} = 1, N_{\tau_{\text{had-vis}}}^{\text{loose}} = 1$	$N_{e/\mu}^{\text{loose}} = 0, N_{\tau_{\text{had-vis}}}^{\text{loose}} = 2$		
<i>e</i> /μ : Medium	, gradient iso.	e/μ : Medium, gradient iso.			
		$ au_{ m had-vis}$: Medium	$ au_{had-vis}$: Tight		
Opposit	e charge	Opposite charge	Opposite charge		
$m_{\tau\tau}^{\text{coll}} > m_Z$	z – 25 GeV	$m_{\rm T} < 70 {\rm GeV}$			
$30 < m_{\ell\ell} < 75 \mathrm{GeV}$	$30 < m_{\ell\ell} < 100 \mathrm{GeV}$				
$E_{\rm T}^{\rm miss} > 55 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		
$E_{\rm T}^{\rm miss, HPTO} > 55 {\rm GeV}$		-			
$\Delta R_{\tau\tau}$	< 2.0	$\Delta R_{ au au} < 2.5$	$0.8 < \Delta R_{\tau\tau} < 2.5$		
$ \Delta\eta_{ au au} $	< 1.5	$ \Delta \eta_{\tau \tau} < 1.5$	$ \Delta \eta_{\tau \tau} < 1.5$		
0.1 < x	$r_1 < 1.0$	$0.1 < x_1 < 1.4$	$0.1 < x_1 < 1.4$		
0.1 < x	$r_2 < 1.0$	$0.1 < x_2 < 1.2$	$0.1 < x_2 < 1.4$		
$p_{\rm T}^{j_1} > 4$	40 GeV	$p_{\mathrm{T}}^{j_1} > 40 \mathrm{GeV}$	$p_{\rm T}^{j_1} > 70 {\rm GeV}, \eta_{j_1} < 3.2$		
N _{b-jet}	s = 0	$N_{b-\text{jets}} = 0$			

- Different numbers of light and tau_{had} leptons in each final state
- Harder MET cut in tau_{lep}tau_{lep} to suppress $Z \rightarrow ll$ for same-flavor
- Jet pt cut: all three final states target at VBF and Boosted Higgs
- Increased jet pt cut for tau_{had}tau_{had} : 2016 trigger requirement
- B-veto: effective to remove top background for tau_{lep}tau_{lep} and tau_{lep}tau_{had}

Signal regions

- Two categories are separately defined to probe different Higgs productions
 - VBF: two tagging jets from Vector-Boson-Fusion (VBF) in the forward region, but up to 30% from gluon-gluon-fusion (ggH)
 - Boosted: mainly high pt Higgs from ggH, but also 10-20% from VBF and VH

Sig	nal Region	Inclusive	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$		
VBF	High- $p_{\rm T}^{\tau\tau}$	$p_{\rm T}^{j_2} > 30 {\rm GeV}$ $ \Delta n \dots > 3$	_	_	$p_{\rm T}^{\tau\tau} > 140 {\rm GeV} \\ \Delta R_{\tau\tau} < 1.5$		
	Tight	$m_{jj} > 400 \text{ GeV}$ $\eta_{j_1} \cdot \eta_{j_2} < 0$	$m_{jj} > 800 \mathrm{GeV}$	$\begin{array}{l} m_{jj} > 500 \mathrm{GeV} \\ p_{\mathrm{T}}^{\tau\tau} > 100 \mathrm{GeV} \end{array}$	Not VBF high- $p_{\rm T}$ $m_{jj} > (1550 - 250 \cdot \Delta \eta_{jj}) \text{GeV}$		
	Loose	Central leptons	Otherwise				
osted	high- $p_{\rm T}^{\tau\tau}$	Not VBF $r^{\tau\tau} > 100 \text{ GeV}$	$p_{\rm T}^{\tau\tau} > 140 {\rm GeV}$ $\Delta R_{\tau\tau} < 1.5$				
Bo	Low- $p_{\rm T}^{\tau\tau}$	$p_{\rm T} > 100 {\rm Gev}$	Otherwise				

Signal regions and control regions

- Six CRs to constrain major backgrounds (top and $Z{\rightarrow}\mathit{ll}$) for $tau_{lep}tau_{lep}$ and $tau_{lep}tau_{had}$
- One $Z \rightarrow \tau \tau$ norm factor for VBF and Boosted each
- Fake norm in the two categories for $tau_{had}tau_{had}$ correlated

MMC mass

- Separate Z boson and Higgs peaks by MMC ditau mass
- MMC reconstruction: scan in the allowed phase space region (missing energy, angles...) for the most likely solutions that are consistent with the kinematics of tau decays
- Same variable as in Run 1 analysis, retuned for Run 2

Signal and background compositions

$Z \rightarrow \tau \tau$ validation

- Define validation regions with high purity in Z $\!\!\!\!\!\!\!\!\!\!\!\!$ ll events and similar kinematics as $Z \!$ or $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
- Based on SF tau_{lep}tau_{lep} selection with dropped MET cuts and inverted m(II) cuts
- Good modeling in variables that define the categories and signal regions

Top and $Z \rightarrow ll CRs$

- Define control regions with high purity in Z→II (invert m II cut) and top (invert bveto)
- check MMC shape modeling & constrain the normalization using data
- Observe good modeling (stat. and sys. errors indicated by hatched band)

Fake estimation for tau_{lep}tau_{lep}

Four different regions are defined for the fake estimation (ABCD method):

- OS/SS : same-sign/opposite-sign leptons
- Nominal: both leptons are isolated (Gradient) and pass Medium
- Fake CR: anti-isolation (harder for SF) for the subleading lepton, and also Loose ID in the case of electrons
- Fake lepton background is about 10% of the total background
- Get the fake transfer factor from SS and apply to OS, which are propagated down the cut flow and to all the SRs (normalization)
- Transfer factors are split in flavor, trigger and b-veto/b-tag bins
- SS is also used to derive the systematic uncertainties in SRs

Fake estimation for tau_{lep}tau_{had} and tau_{had}tau_{had}

About 33% of total background Using "Fake Factor" method:

$$N_{\text{fakes}}^{\text{SR}} = \left(N_{\text{Data}}^{\text{anti-}\tau} - N_{\text{MC, not } j \to \tau}^{\text{anti-}\tau} \right) \cdot \mathcal{F}$$

Estimate $F(N_{trk}, p_T)$ in W+jets and QCD CRs

 $\mathcal{F} = R_W \mathcal{F}_W + R_{\text{QCD}} \mathcal{F}_{\text{QCD}}$

W+jets CR: invert m_T cut QCD CR: invert lepton isolation RQCD: estimated from data Use SS for closure

About 40% of total background

Get template events from SS, also include events with 2-track taus

Reweighted in $\Delta \phi(\tau, \tau)$ to improve MMC modeling at low mass Reweighting derived in events where subleading tau fails tight ID

Systematic Uncertainties

Impact = $\Delta \sigma_{H \to \tau \tau} / \sigma_{H \to \tau \tau}$

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ (%)					
	Observed	Expected				
Theoretical uncert. on signal	+13.5 / -8.7	+11.9 / -7.7				
Background statistics	+11 / -10	+10.2 / -9.8				
Jets and $E_{\rm T}^{\rm miss}$	+11.5 / -9.3	+10.5 / -8.6				
Background normalization	+6.8 / -4.8	+6.6 / -4.6				
Misidentified $ au$	+4.5 / -4.2	+3.7 / -3.4				
Theoretical uncert. on background	+4.6 / -3.6	+5.1 / -4.2				
Hadronic taus	+4.7 / -3.0	+5.8 / -4.2				
Flavour tagging	+3.3 / -2.4	+2.9 / -2.2				
Luminosity	+3.3 / -2.3	+3.1 / -2.2				
Electrons and muons	+1.2 / -1.0	+1.1 / -0.9				
Total systematic uncert.	+24 / -20	+22 / -19				
Data statistics	±16	±15				
Total	+28 / -26	+27 / -25				

- JER and MET soft shifted and constrained due to their correlation with the MMC reconstruction
- The constraints come from the Z→ττ peak

Postfit yeilds

			$ au_{ m lep} au_{ m lep} { m VBF}$			$\tau_{\rm lep} \tau_{\rm lep}$ boosted					
	tau _{lep} tau _{lep}		Loose		Ti	Tight I		Low- $p_{\rm T}^{\tau\tau}$		High- $p_{\rm T}^{\tau\tau}$	
	Total backgr	ound	231	±14	177	± 12	4 089	± 65	3 4 2 0	±57	
	Total signal		8.1	± 2.3	13.5	± 3.7	46	±12	47	±12	-
	Data		237		188		4124		3444		
			$ au_{ m lep} au_{ m had}~{ m VBF}$			$\tau_{\rm lep} \tau_{\rm had}$ boosted					
	tau _{lep} tau _{had} Total background		Loose T		ight	ht Low- $p_{\rm T}^{\tau\tau}$		^{au} High- $p_{\rm T}^{ au\tau}$			
			299	±18	459	±23	6430	± 88	6230	±92	_
	Total signal		11.7	7 ± 3.3	32.5	5 ± 8.4	80	± 20	86	±24	
	Data		318		496		6556		6347		
tau _{had} tau _{had}			$ au_{ m had} au_{ m had} m VBF$			$\tau_{\rm had} \tau_{\rm had}$ boosted					
		Loo	ose Tight		ght	High- $p_{\rm T}^{\tau\tau}$		Low- $p_{\rm T}^{\tau\tau}$ H		Hig	$h-p_{\mathrm{T}}^{ au au}$
Total b	ackground	119 ±	: 10	210 =	±13	168	±13	5411	± 80	4068	± 66
Total s	ignal	2.6 ±	0.8	8.4	± 2.4	14.6	± 3.8	56	± 15	67	±18
Data		121		220		179		5455		4103	

SR distributions (VBF)

- MMC in the same binning as used in the fit
- Data well modeled by signal+background
- Signal scaled to observed cross section (1.08 of SM)

SR distributions (Boosted)

Boosted contributes roughly the same sensitivity as the VBF category

Fit results

Fitted:
$$\sigma_{ggH} = 3.0 \pm 1.0(stat)^{+1.6}_{-1.2}(sys)$$
 pb
 $\sigma_{VBF} = 0.28 \pm 0.09(stat)^{+0.11}_{-0.09}(sys)$ pb

SM:
$$\sigma_{ggH}^{SM} = 3.05 \pm 0.13$$
 pb
 $\sigma_{VBF}^{SM} = 0.237 \pm 0.006$ pb

Summary

Established $H \rightarrow \tau \tau$ events at 4.4 σ (expected at 4.1 σ) with Run-2.

When combined with Run-1, observed significance is 6.4 σ (expected 5.4 σ). First observation of SM H $\rightarrow \tau\tau$ in a single LHC experiment

Measured cross sections consistent with SM predictions

- Constraints on VBF coupling similar to Run 1
- Constraints on ggF coupling improved by factor ~2

Reference:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-021