Higgs property measurement in di-photon final state

Yanping Huang

IHEP, CHINA

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

中国物理学会高能物理分会第十届全国会员代表大会及学术年会

*

The Higgs @ LHC

~2.3 pb (4%) ~0.5 pb (1%)

The Legacy of Run-1

The first measurement of Higgs properties: No significant deviation from SM.

How to Mea

Analysis power

one of simplified template cross section measurement (STXS)

ŦΤ

Why in $H \rightarrow \gamma \gamma$?

- High photon reconstruction and identification efficiencies lead to a sizable Higgs signal yield
- Good photon resolution exhibits the Higgs signal a peak on top of a smoothing falling background
- Nice signal-background separation

Di-photon Selection / Categorization

- Preselection of two leading loose photons within |η|<2.37 excluding crack region [1.37, 1.52]
- Photon candidates must be tight identification requirements + isolated (track and calorimeter isolation within ΔR=0.2)
- + Leading (sub-leading) photon with $p_T^{\gamma}/m_{\gamma\gamma}$ >0.35(0.25)
- + Diphoton mass window of 105 GeV < $m_{\gamma\gamma}$ < 160GeV

Mass measurement

- Dominant systematic uncertainties in $\gamma\gamma$ channel:
 - Photon energy scale: ±260MeV in "ggH 0J Cen" 470MeV in "Jet BSM"
 - Background modeling: ±60MeV
 - Event vertex selection: ±40MeV
- ATLAS-only Combined result is comparable w.r.t. ATLAS+CMS Run-1 combination
- Uncertainty on coupling ~ 0.5%

Systematic uncertainty in m_H [MeV]

60

55

55

45

45

40

20

20 20

15

15

Signal strength

- m_H=125.09GeV (ATLAS+CMS Run1 combination)
- The global signal strength measurement improves on the Run1 precision with a factor of 2.

Production mode cross section

The signal yield in each category c is parametrized with the cross section of each mode.

$$L \times \sigma_i^{\text{SM}} \times B^{\text{SM}}(H \to \gamma \gamma) \times (A \times \epsilon)_i^c$$

•

Direct measurement on the production mode cross section, as well as rate parametrization to cancel out the impact of the possible branching ratio derivations.

Simplified template cross section

- A merged strategy for simplified template cross section measurement is used to reduce strong correlations and keep total uncertainty near or below 100%
- The signal yield in each category c is the sum over the yields from the simplified template regions $U \times \sigma^{\text{SM}} \times P^{\text{SM}}(U \to w) \times (A \times c)^{c}$

$$L \times \sigma_t^{\mathrm{SM}} \times B^{\mathrm{SM}}(H \to \gamma \gamma) \times (A \times \epsilon)_t^c$$

 Since defined to minimize theoretical uncertainty, the measurements are strongly dominated by experimental uncertainty

ATLAS-CONF-2017-047 Simplified template cross section measurements

Fiducial cross section measurement

arXiv:1802.04146

ATLAS-CONF-2017-047

Fiducial region	Measured cross section	SM prediction	
Diphoton fiducial	$55 \pm 9 (\text{stat.}) \pm 4 (\text{exp.}) \pm 0.1 (\text{theo.}) \text{ fb}$	$64 \pm 2 \text{fb}$	$[N^{3}LO + XH]$
VBF-enhanced	3.7 ± 0.8 (stat.) ± 0.5 (exp.) ± 0.2 (theo.) fb	$2.3 \pm 0.1 \text{fb}$	[default MC + XH]
$N_{\text{lepton}} \ge 1$	≤ 1.39 fb 95% CL	0.57 ± 0.03 fb	[default MC + XH]
High $E_{\rm T}^{\rm miss}$	≤ 1.00 fb 95% CL	0.30 ± 0.02 fb	[default MC + XH]
<i>ttH</i> -enhanced	≤ 1.27 fb 95% CL	$0.55 \pm 0.06 \text{ fb}$	[default MC + XH]

In good agreement with SM prediction

Differential cross section measurement

Higgs boson production / Jet kinematics, Spin-CP, VBF production mode

The data slightly undershoot (overshoot) the SM prediction at low (large) transverse momentum.

•

The compatibility is tested with the probability from χ^2 test and first/second moment, shows a good agreement.

Differential cross section measurement

Higgs boson production / Jet kinematics, Spin-CP, VBF production mode

Search for anomalous Higgs-boson interactions

top-quark Yukawa coupling

Two dedicated boosted decision trees are trained to discriminate the signal from background. (Had region + Lep region)

Signifiance	Obs.	Exp.
Had region	3.8 σ	2.7 σ
Lep region	1.9 σ	2.5 σ
Total	4.1 σ	3.7 σ

Obs. (Exp.) significance: 6.3 (5.1) σ

150

160

 $m_{\gamma\gamma}$ [GeV]

Summary

• With Run2 2015+2016 data (36.1 fb⁻¹):

- Comprehensive measurement methodologies including Run-1 type coupling measurement, fiducial and differential cross section measurement and the new one of simplified template cross section measurement.
- Extensive Higgs property measurement in $H \rightarrow \gamma \gamma$ and further combination with $H \rightarrow ZZ$.
- Overall, all the results are in good agreement with the SM prediction.

• With higher statistics data:

- More extensive and sensitivity measurement.
- Looking forward to the update results with ~80 fb⁻¹ @ ICHEP2018

Prospect

