

Effects of finite coverage on global polarization observables in heavy ion collisions

Phys. Lett. B 780,319-324(2018)

Shaowei Lan¹, Zi-Wei Lin^{1,2}, Shusu Shi¹, Xu Sun¹

¹ Central China Normal University ² East Carolina University

Outline

- > Introduction & Motivation
- > Modified AMPT model
- > Analysis method and results
- ➤ Summary

Introduction

Large initial angular momentum in non-central heavy ion collisions.

Due to spin-orbit coupling, it may result in net polarization of produced particles along the direction of initial angular momentum.

Λ polarization

> The global polarization of Λ hyperons can be determined from the angular distribution of Λ decay products relative to the system angular momentum \vec{L} .

ϕ -meson spin alignment

Z. Liang and X. Wang, Phys. Lett. B 629,20-26(2005)

The 00-component of φ-meson spin density matrix (ρ₀₀) can be measured by angular distribution of decay daughter using:

 $\frac{dN}{d\cos\theta^*} \propto (1+\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*$

> θ^* is the angle between \vec{L} and the momentum of daughter K⁺ in the rest frame of parent ϕ -meson.

$\rho_{00} ≠ 1/3$ indicates φ-meson spin alignment.

STAR: QM2017 Xu Sun STAR: QM2018 Chengsheng Chou

Systematically larger than 1/3.

A Multi-Phase Transport Model

Zi-Wei Lin, Ko, Li, Zhang and Pal, Phys. Rev. C 72, 064901 (2005)

Four Main Parts: Structure of AMPT v2.xx (String Melting version) The initial condition. HUING1.0: A+B Partonic scattering. minijet partons (hard), excited strings (soft), spectator nucleons Hadronization. Generate parton space-time Strings melt to q & qbar Hadronic scattering. via intermediate hadrons ZPC (parton cascade) Partons freeze out **Modified part :** Hadronization (Quark Coalescence) Added input ρ_{00} and p_H parameter \geq to specify the degree of spin Extended ART (hadron cascade) alignment of ϕ -meson and Hadrons freeze out (at a global cut-off time); then strong-decay all remaining resonances Λ polarization at decay. Final particle spectra System angular momentum direction is calculated event-byevent.

ρ_{00} extraction

Background : Event Mixing technique.

> Invariant mass distributions for 7 different $cos\theta^*$ bins.

$$\succ \text{ Fit } \cos\theta^* \text{ distribution with: } \frac{dN}{d\cos\theta^*} = N_0 * [(1-\rho_{00}) + (3\rho_{00} - 1) * \cos^2\theta^*]$$

> Fitted results well reproduce the input value with no phase space cut.

η -cut effect on ho_{00}

 \succ η-cut excludes more kaons around cos $θ^*$ ~ 0.

η -cut effect on p_H (Λ at rest)

η -cut effect on ho_{00}

- Apply $|\eta| < \eta_{max}$ for kaons, when the cut is below $|\eta| < 1.3$, a narrower η acceptance gives a significantly larger ρ_{00} value than the input value.

η -cut effect on p_H

> Extracted p_H is always consistent with 0 when input $p_H = 0$.

> The effects of η -cut on p_H are similar as those on ρ_{00} of ϕ -mesons.

> p_T cut can lead to deviation of the extracted p_H from the input value.

Energy dependence on ho_{00}

- ➤ Systematically higher than 1/3.
- Similar weak energy dependence to the STAR preliminary measurement.
- > May be a dominant contribution to the deviation of the current experiment data of ρ_{00} from 1/3.

Energy dependence on p_H

(STAR), Nature 548, 62 (2017) arXiv:1805.04400

- Consistent with zero when input polarization signal is null.
- ➤ Rather close to the input value (within ~ 0.3%) when input $p_H = 0.01$.
- The phase-space cuts do not introduce an energy dependence for the extracted p_H value.

Summary

- ► We present finite acceptance(η and p_T) effect on global polarization observables (ρ_{00} and p_H).
- > η -cuts lead significantly larger value than input for ϕ -meson spin alignment and slightly larger value than input for global Λ polarization in AMPT model.
- A finite coverage in η and p_T has no effect on the extracted p_H when assuming no polarization.
- We suggest measured polarization observables need to be corrected for a finite acceptance.

Thank you.

η -cut effect on ho_{00}

 $\succ \eta$ -cut excludes more kaons around $\cos\theta^* \sim 0$.

> η -cut mostly affects low p_T region.

η cut effect on ϕ

η cut effect on ϕ

η cut effect on ϕ

