

ALICE实验中带电喷注产 额及核修正因子的研究

华中师范大学

中国物理学会高能物理分会第十届全国会员代表大会暨学术年会

Motivation

- Jet is defined as collimated spray of particles originating from initial hard scattered partons.
- Jet cross section measurement in pp collisions provides good tests for pQCD calculation.
- Investigate the splitting function of parton in vacuum:close to original collimation information.

Motivation

- ➤ Jet produced in early stage of the collision will traverse the hot QGP medium created in heavyion collisions and will lose energy by collision and radiations → "Jet quenching"
- ➢ Jet quenching results high p_T suppression compared to pp measurements → Nuclear modification factor R_{AA}/R_{CP}

$$R_{AA} = \frac{dN_{jets}^{AA} / dp_T}{\langle N_{coll} \rangle dN_{jets}^{pp} / dp_T} = \frac{dN_{jets}^{AA} / dp_T}{\langle T_{AA} \rangle d\sigma_{jets}^{pp} / dp_T}$$

2018-6-23

Jet measurements in ALICE

Corrected jet cross section in pp collision

- Charged jets are measured using different resolution parameters
- Jet cross section is well described by POWHEG+PYTHIA8 predictions (NLO pQCD+parton shower+hadronization) within systematic uncertainties

Jet cross section ratio @ pp

- > Jet cross section ratio measurements are the reflection of jet collimation
- Different jet cross section ratio is consistent with Monte Carlo simulation
- ➤ Jet cross section ratio is consistent with different \sqrt{s} , slightly increasing with jet p_T

Charged jet production *ⓐ* **Pb-Pb**

Charged jet spectra in different centrality bins are measured in Pb-Pb collision with different jet radii

➢ Jet production yield are scaled by T_{AA} and using POWEG+Pythia for pp reference 2018-6-23

Jet cross section ratio @ Pb-Pb

- Ratio of charged jet cross section between R=0.2 and R=0.3 are measured for different centrality intervals
- No significant difference compared to ratio in vacuum (POWHEG+PYTHIA8 reference)

Small difference at low $p_{\rm T}$ in central collisions \rightarrow Hints for stronger broadening at low $p_{\rm T}$

Jet nuclear modification factor R_{AA}

I-PREL-156375

- Strong suppression is observed in central Pb-Pb collisions
- Less suppression for peripheral events
- > R_{AA} of different radius jets are similar with systematic errors
- > POWHEG+PYTHIA8 is used as pp reference to enlarge to higher jet p_T range

 $R_{\rm AA}$

Comparison between charged & full jets

 \succ Full jets and charged jets R_{AA} is consistent

ightarrow R_{AA} at 5.02 TeV similar to 2.76 TeV

It indicates effect of flattening of the spectrum in higher collision energy is compensated by stronger jet suppression

 $_{2018-6-23}$ > All measurements are consistent within errors

Summary and outlook

- Charged jet cross section in pp and Pb-Pb collisions at 5.02 TeV for different jet radius are measured
- > Jet cross section ratio are studied in both pp and Pb-Pb collisions
 - No significant difference with measurements in Pb-Pb compared to the one in vacuum
- \succ Nuclear modification factor (R_{AA}) has been measured
 - Strong jet suppression is observed in central Pb-Pb collisions
 - Centrality dependence is observed
 - > Full jets and charged jets R_{AA} is consistent

Outlook

- Study of jet production in different multiplicity intervals on going
 - ➢ Similar trend as high p_T charged particle results
 anticipated →Please stay tuned!

2018-6-23

Backup

Analysis stragegy

Minimum bias events (V0 and trigger)	$p_{T,jet}^{corr} = p_{T,jet}^{raw} - \rho.A_{jet}$
 Z_{y Primary vertex} < 10 cm The charged tracks measured by ITS + TPC 	$\rho = median \left\{ \frac{p_{T, jet}^{kt}}{A} \right\}$

$$\succ ~|\eta_{track}| < 0.9$$
 , $p_{T,track} > 0.15~GeV/c$

- Neutral components measured by EMCAL
 - \blacktriangleright $|\eta_{cluster}| < 0.7$, $E_{T,cluster} > 0.3$ GeV/c
- \blacktriangleright Signai: Anti-k_T algorithm, background: k_T algorithm
 - Utilizing FastJet package
 - \blacktriangleright Jet cone radii R=0.2, 0.3
- \blacktriangleright $|\eta_{\text{jet,Ch}}| < 0.9$ -R, $p_{\text{T,leading}} > 5 \text{ GeV/c}$
- Raw spectra are corrected by SVD unfolding method
 - Utilizing RooUnfold package (arXiv:1105.1160)
 - Detector responses are evaluated by Pythia8+Geant3 full MC detector simulation
 - Background fluctuations are evaluated by random cone method for charged jets and are evaluated by embedding Pythia8 events into Pb-Pb data

 A_{iet} : Jet _ area

Data and event selection

➢ Raw jet spectra

Event samples: 68 M(Charged jets, 0-80%)

Minimum bias events of Pb-Pb at $s_{NN} = 5.02$ TeV

- \blacktriangleright Reconstructed by anti-k_T algorithm, R=0.2 and 0.3, k_T-scheme
- Combinatorial backgrounds are suppressed by leading charged track requirement ($p_T > 5 \text{ GeV/c}$)
- Background subtraction
 - Event-by-event background density estimation and subtraction
- Measured spectra are corrected by SVD unfolding method
 - Charged jets
 - Detector response : Pythia8+Geant3 full MC detector simulation
 - Background fluctuation : Random cone method

Jet jet reconstruction

- > Hybrid Track : $P_T^{Track} > 0.15 \text{GeV/c}$ $|\eta| < 0.9$
- \succ Charged Jet reconstruction: anti-k_T algorithm
- > Underlying event: k_T algorithm

2018-6-23

$$P_T^{Jet} > 1 \text{GeV/c} \quad \left| \eta_{jet} \right| < 0.9 - R$$

Jet background subtraction @Pb-Pb

 \blacktriangleright Background density ρ as function of centrality

> δp_T from different type of rigid random cones with R=0.2 and centrality 0-10%. The left -hand-side has been fitted with a gaussian