Deep learning the SUSY search at the LHC

Jinmian Li

Korea Institute for Advanced Study

June 22nd, 2018

Conference of Chinese High Energy Physics

Shanghai

Supersymmetric particles at the LHCR-parity violating SUSY

2 Application of CNN in RPV SUSY search - a case study

Motivations of supersymmetry

• Hierarchy problem :

• Gauge coupling unification

$$\sim + \frac{3}{4\pi} y_t \Lambda^2$$

Cold dark matter candidate (R-parity: $(-1)^{3(B-L)+2s}$)

Jinmian Li (KIAS)

R-parity violating SUSY and its search at the LHC

- Search for RPC SUSY is very efficient, almost reaching the background free region: look for high p_T particles and large missing energy.
- R-parity is not necessary by SUSY theoretical framework, but to avoid proton decay.

$$W_{\rm BNV} = \frac{\lambda_{ijk}^{\prime\prime} \bar{U}_i \bar{D}_j \bar{D}_k}{\sum_{u_i}} \xrightarrow{\lambda_{ijk}^{\prime\prime}} \tilde{d}_k^*$$
$$W_{\rm LNV} = \frac{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda_{ijk}^{\prime} L_i Q_j \bar{D}_k + \epsilon_i L_i H_2}{\sum_{ijk}} \xrightarrow{\tilde{d}_k^*} \frac{\tilde{\ell}_k}{\tilde{d}_k^*} \xrightarrow{\tilde{\ell}_k} \tilde{d}_k^*$$

- Proton is stable if only one of the terms is set to non-zero.
- The bounds on RPV SUSY is still relatively weak in same cases. Sufficient signal events for improvement.

Jinmian Li (KIAS)

Sparticle production and decay in RPV SUSY

- "LQD" (UDD) allows single slepton (squark) production at the hadron collider;
- Decays:

LLE: $\tilde{e}^- \rightarrow \bar{u} \ell^- \mu \ell^-$						
_	$\tilde{\nu}_{j} \rightarrow \tilde{\nu}_{i} \tilde{c}_{k}, \ \tilde{\nu}_{k} \tilde{c}_{i}$ $\tilde{\nu}_{i} \rightarrow \ell^{+}_{i} \ell^{-}_{i}$					
	$\tilde{\chi}_n^0 \to \bar{\nu}_i \ell_i^+ \ell_k^-, \ \nu_i \ell_i^- \ell_k^+$					
_	$\tilde{\chi}_n^+ \to \ell_i^+ \ell_i^+ \ell_k^-$					
	$\tilde{\chi}_n^+ \to \bar{\nu}_i \ell_i^+ \nu_k, \ \nu_i \nu_j \ell_k^+$					
	5 0 10					

LQD:

$$\tilde{e}_i^- \to \bar{u}_j d_k$$

 $\tilde{\nu}_i \to \bar{d}_j d_k$
 $\tilde{u}_j \to e_i^+ d_k$
 $\tilde{d}_k \to \nu_i d_j, \ \bar{\nu}_j d_i, \ \ell_i^- u_j$
 $\tilde{\chi}_n^0 \to \bar{\nu}_i \bar{d}_j d_k, \ \ell^+ \bar{u}_j d_k, \ + \text{c.c.}$
 $\tilde{\chi}_n^+ \to \bar{\nu}_i \bar{d}_j u_k, \ \nu_i \bar{d}_k u_j$
 $\tilde{\chi}_n^+ \to \ell_i^+ \bar{u}_j u_k, \ \ell_i^+ \bar{d}_j d_k$

UDD:

$$\vec{d}_j \rightarrow \bar{u}_i \bar{d}_k$$

 $\tilde{u}_i \rightarrow \bar{d}_j \bar{d}_k$
 $\tilde{\chi}_n^0 \rightarrow u_i d_j d_k, + \text{c.c.}$
 $\tilde{\chi}_n^+ \rightarrow u_i u_j d_k, \ \bar{d}_i \bar{d}_j \bar{d}_k$
 $\tilde{g} \rightarrow u_i d_j d_k, + \text{c.c.}$

The RPV SUSY searches at the LHC

- Leptonic RPV more constrained due to many leptons in final states.
- Hadronic RPV gives more "jetty" final states and therefore is less constrained.

CNN applications

Image classification:

\mathbf{W}/\mathbf{Z} jet tagging:

Top quark jet tagging:

L. Almeida et.al. 1501.05968;

L. de Oliveira et.al. 1511.05190; G. Kasieczka et.al. 1701.08784;

S. Macaluso et.al. 1803.00107

Gluon/quark discrimination:

P. Komiske et.al. 1612.01551; H. Luo et.al. 1712.03634;

. . .

Jinmian Li (KIAS)

Purpose:

Improve the hadronic RPV gluino search by tagging neutralino jets with CNN **Strategy**:

- Information about hadronic activity in an event comes mainly from the hadronic calorimeter (HCAL), with the basic observable being the energy deposited in each of the HCAL cells.
- One can think of the information provided by the HCAL as a digital image, with each cell being identified as a pixel, and with energy deposit in the cell corresponding to the intensity (or grayscale color) of that pixel.
- Neutralino jet identification is simply a classic image-recognition problem: distinguishing the energy-deposit patterns of boosted neutralino from patterns due to other sources, such as QCD jets.

Jet into images

Jinmian Li (KIAS)

Training the CNN

- Singal: Events with only $\tilde{\chi}^0 \to jjj(bjj), m_{\tilde{\chi}^0} = 100$ GeV, $p_T(\tilde{\chi}^0) > 200$ GeV
 - $|\eta(\tilde{\chi}^0)| < 0.1$
 - $|\eta(\tilde{\chi}^0)| < 2.5$
- Background: QCD jet with the same cuts.
- CNN parameters

.

Jinmian Li (KIAS)

Deep learning SUSY search

Jun. 22nd 11 / 17

Sensitivity to CNN parameters and jet direction

• Not sensitive to CNN parameters: size and number of convolutional kernels, dropout rates, learning rate, ...

- The identification is best for fixed jet angle $(|\eta| \sim 0)$
- Feature captured by CNN in $|\eta| \sim 0$ sample are not useful for $|\eta| < 2.5$ sample.
- CNN trained on $|\eta| < 2.5$ sample works well also on $|\eta| \sim 0$ sample.

Comparing with jet substructure variable

- N-subjettiness: $\tau_N = \frac{\sum_k \min\{\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}\}}{\sum_k p_{T,k} R_0}$
- jet invariant mass, for signal $m_{\rm neu} \sim 100$ GeV.

• CNN can be improved by adding the jet mass information.

Jinmian Li (KIAS)

Different neutralino masses

- CNN trained on a given neutralino mass loses some sensitivities when applying to different masses
- CNN + M scenario works better.
- Idea for general signal search: define signal regions with CNN trained on a few chosen masses and used together with the invariant mass information.

Jinmian Li (KIAS)

LHC search for multi-jet (gluino)

ATLAS-CONF-2016-057

N _{jet}	b-tag		b-veto	inclusive	
	$ \Delta\eta_{12} >1.4$	$ \Delta\eta_{12} <1.4$	-	$ \Delta\eta_{12} >1.4$	$ \Delta\eta_{12} <1.4$
= 3	3jCRb1_4j	-	3jCRb0_4j	3jCR_5j	
≥ 4	4jVRb1	4jSRb1	-	4jVR	4jSR
≥ 5	5jVRb1	5jSRb1	-	5jVR	5jSR

Table 1: Control (CR), validation (VR), and signal (SR) regions used for the analysis.

Selections:

- Jets have $p_T > 200 \text{ GeV}$ and $|\eta| < 2.0$
- Leading jet $p_T > 440$ GeV

Jinmian Li (KIAS)

Apply to the realistic gluino search

- The power of neutralino jet identification decreases with increasing number of jets.
- Visible differences in jets score for gluino events and QCD events.
- The current bound can be improved by ~ 200 GeV.

- Some RPV SUSY searches are not so optimized, have sufficient signal events for possible improvement.
- CNN is helpful in RPV searches, increase the bound on gluino by ${\sim}200$ GeV.

Possible issues:

- Not fully learning the jet mass information?
- Identification power suppressed by the number of jets?

