D^{*+} production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV measured by the STAR experiment

Yuanjing Ji, for the STAR Collaboration University of Science and Technology of China

State Key Laboratory of Particle Detection and Electronics

Outline

CHEP 2018, 06/23

- Motivation
- ♦ STAR Detector
- Reconstruction and Efficiency
- ♦ Results
- ♦ Summary

Motivation

- ♦ Dominantly produced during hard partonic scatterings at the early stage
 - calibrated probe calculable in pQCD
 - experience the entire QGP evolution
 - sensitive probes to the medium properties

Motivation

Study the D^{*+}/D^0 ratio;

(1) D^{*+} feed-down contribution to D^0 yields;

 $D^{*+} \rightarrow D^0 \pi^+_{soft}$

- (2) Other effects:
 - -- D^{*+} spectral function predicted to broaden in hot medium ^[1];
 - -- Re-scattering which has already been seen in K^{*} ^[2].

ResonanceK*(892) $D^*+(2010)$ Decay channel $K \pi$ $D^0 \pi$ Branching Ratio %~10067.7Width50.7 MeV83.3 KeVLife time4 [fm/c]~2[pm/c]

STAR Detector

STAR Heavy Flavor Tracker provides excellent vertex resolution and allows reconstruction of charm hadron decays.

Heavy Flavor Tracker (HFT) Inner tracking system (2014-2016):

- ♦ Silicon Strip Detector: r ~22 cm
- Intermediate Silicon Tracker: r ~14 cm
- $\begin{array}{l} \Diamond \quad PIXEL \ detector: r \sim 2.8 \& 8 \ cm, \ MAPS, \\ 20.7x20.7 \ \mu m^2, \ 0.5\% X_0 \ thick, \ air-cooled \end{array}$

Dataset and reconstruction method

♦ Dataset:

- Au+Au @ 200 GeV recorded in 2014;
- ~ 900Million minimum-bias events.

♦ Reconstruction method

 $D^{*+} \rightarrow D^0 \pi^+_{soft} (B.R. = 67.7\%),$ $D^0 \rightarrow K^- \pi^+ (B.R. = 3.89\%),$ and its charge conjugate channel.

♦ D⁰ reconstruction cuts:

$$\begin{split} |y|_{D^0} < 1; \\ K/\pi : p_T > 0.3 \text{ GeV/c}; \\ K/\pi : |\eta| < 1; \\ K/\pi : \text{at least one hit in each layer of PXL and IST}; \\ K/\pi \text{ PID} : \text{if TOF available, TOF \&& TPC}; \end{split}$$

CHEP2018, Yuanjing Ji

Signal extraction

$\land \pi_{soft}$ cuts:

 $DCA_{PV} \le 3 \text{ cm}$, not refitted with the PV; $nHitsFit \ge 20$, (no requirement to leave hits in HFT); $p_T > 0.15 \text{ GeV/c}$; $|\eta| < 1$; PID: TOF and TPC if TOF is available, otherwise TPC only.

Background is estimated by the mixedevent method.

♦ D^{*+} efficiency

D⁰ efficiency $\otimes \pi_{soft}$ efficiency;

Vertex resolution correction;

 \diamond D⁰ efficiency

D⁰ reconstruction efficiency ← Fast simulation with inputs from data and embedding;

Mass cut efficiency \leftarrow Real data D⁰ signal;

π_{soft} efficiency

TPC tracking efficiency ← TPC embedding;

TOF matching efficiency \leftarrow Real data;

PID efficiency \leftarrow Extracted using the pure pion sample from K_s^0 decay.

Efficiency

 $D^{*+}p_{T}$ spectra

Branching ratio = 67.7%*3.89%; $\frac{d^2N}{2\pi p_T dp_T dy} = \frac{\text{Raw yield / Eff.}}{2\pi p_T \Delta p_T \Delta y N_{events} \times B.R.}$

 D^{*+}/D^0 ratio vs. p_T

- ♦ D^{*+}/D^0 ratio shows a rising trend as p_T increases.
- ◊ D*+/D⁰ (Au+Au @ 200 GeV) ~ D*+/D⁰ (Pb+Pb @ 5.02 TeV) ^[1].
- PYTHIA8 (STAR-HF Tune) consistent with data;
 - -- D^{*+} and D^0 has similar suppression.

[1] ALICE Collaboration. arXiv:1804.09083.

 No strong centrality dependence;
-- No significant hot medium effect on the D*+ life time.

[1] Phys. Rev. C (2011)84, 034909

- ♦ D^{*+} p_T spectra and D^{*+}/D⁰ ratio have been measured for different centrality classes of Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
- \diamond The p_T dependence of D*+/D⁰ ratio is similar in different centrality bins, and is comparable to PYTHIA8.
- \diamond Ratio of integrated yields (2 < p_T < 10 GeV/c) of D*+ to D⁰ shows no strong centrality dependence. No significant effect from hot medium on the D*+ life time.

Outlook

Combine STAR Run 2014 data with Run 2016 data to improve statistical
precision.