Experimental study of \phi(2170)

Wenbiao Yan For BESIII Collaboration

- Why do we study $\phi(2170)$?
- How to study $\phi(2170)$?
- Status of $\phi(2170)$ @ experiment
- Summary and outlook

中国物理学会高能物理分会第十届全国会员代表大会暨学术年会

Strange quarkonium

Compared with cc and bb, ss is a terra incognita
 Strange quarkonium is the bridge between lighter quark sector and charmonium & bottonium
 Difficulty: small mass, ss and nn

\$(2170)

P	DG Ø(2170) DECAY MODES	5
	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂ Γ ₂	e^+e^- $\phi\eta$ $\phi\pi\pi$	seen
Γ ₃ Γ ₄ Γ ₅	$\phi_{f_0}(980) \\ K^+ K^- \pi^+ \pi^-$	seen
Г ₆ Г ₇	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^+ \pi^- K^+ K^- \pi^0 \pi^0$	seen
Γ ₈ Γ ₉ Γ ₁₀	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^0 \pi^0 K^{*0} K^{\pm} \pi^{\mp} K^* (892)^0 \overline{K}^* (892)^0$	seen not seen not seen

2018/6/20

Published experimental information

- ✓ Limited decay modes
- ✓ Inconsistence on mass & width
- Theorists explain $\phi(2170)$ as
 - ✓ ssg hybrid
 - $\checkmark 2^{3}D_{1} \text{ or } 3^{3}S_{1} s\bar{s}$
 - ✓ tetraquark
 - ✓ Molecular state $\Lambda \overline{\Lambda}$
 - ✓ $\phi f_0(980)$ resonance with FSI
 - ✓ Three body system **\overline\$KK**

• aspects of $\phi(2170)$ are still not fully understood.

\$(2170)

\$(2170)	Mass (MeV)	Width (MeV)
3 ³ S ₁	2050	378
$2^{3}D_{1}$		167.21
		211.9
hybrid		148.7
		155
		120
	2100-2200	
	2500-2600	
sīsīs	2210±90	
	2300±400	
	2176	
$\Lambda\overline{\Lambda}$		80.1-95
PDG	2188±10	83±12

0.6 33S, ss @ PR D55, 4157 33S, ss @ Lanzhou 0.5 2³D, ss @ PL B657, 49 2³D₁ ss @ Lanzhou 0.4 Fraction (Γ_i/Γ) 1" ssg @ PL B650, 390 1" ssg @ PR D59, 034016 0.3 0.2 0.1 0.0 φη (958) K[°]K K K°(1410 K K ₁(127) KK₁(140 ηh (1380 KK KK K K(1460 K K₂(143) -0.1

• **KK** $\pi\pi$: benchmark process

- ✓ **K**^{*}**K**^{*}: s $\bar{s}g$ (forbidden), 3³S₁ (favored)
- \checkmark **KK**₁(1400): ssr (favored)
- \checkmark **KK**(1460): ssg (forbidden), 2³D₁ (favored)
- $\phi\eta: 2^{3}D_{1}$ (forbidden), tetraquark (favored)
- $\Phi\eta$ ': tetraquark (favored)
- $\eta h_1(1380)$: ssg (forbidden)
- **KK**: $s\bar{s}g$ (forbidden), ${}^{3}S_{1}\Lambda\overline{\Lambda}$ (favored)

Wenbiao USTC

\$\$(2170) @ ISR method

5

φ(2170) @ energy scan method

Wenbiao USTC

6

$e^+ e^- \rightarrow \phi f_0(980), \phi \pi \pi, \phi f_0(600)$

- Select $f_0(980)$ by $0.85 < m_{\pi\pi} < 1.1 GeV$
 - ✓ About 10% non- ϕ f₀(980) count as ϕ f₀(980) signal

✓ φππ: M=2.079 ± 0.013 GeV; Γ =0.192 ± 0.023GeV

- ✓ $\phi f_0(980)$: M=2.163 ± 0.032 GeV; Γ =0.125 ± 0.040GeV
- select $f_0(600)$ with $m_{\pi\pi} < 0.85 \text{ GeV}$ 2018/6/\$(1680) $\rightarrow \phi f_0(600)$: eVes: ϕ (2175) $\rightarrow \phi f_0(600)$: No

$e^+ e^- \rightarrow \eta \phi f_0(980)$

Wenbiao US

apply sideband method for non- ϕ f₀(980) events

(2170) mass (MeV)

$e^+ e^- \rightarrow \phi \pi \pi$

	φπ	π@	$\sqrt{s} =$	2.125	GeV	for Z	' S
	ππ	inva	arian	t mass	: f ₀ (500),	
f ₀ ((800)), tai	l fron	n f ₀ (13	70),	f ₂ (127	70)
		A of			00 2	2 <u></u>	

	Ô		2 001	0.17
PWA OI $\phi \pi \pi$	W	[2.00,	3.08]	Gev

Data set	\sqrt{s} (GeV)	Luminosity (pb ⁻¹)
1	2.0000	10.074
2	2.0500	3.343
3	2.1000	12.167
4	2.1250	108.490
5	2.1500	2.841
6	2.1750	10.625
7	2.2000	13.699
8	2.2324	11.856
9	2.3094	21.089
10	2.3864	22.549
11	2.3960	66.869
12	2.6444	33.722
13	2.6464	34.003
14	2.9000	105.253
15	2.9500	15.942
16	2.9810	16.071
17	3.0000	15.881
18	3.0200	17.290
19	3.0800	126.185

$e^+ e^- \rightarrow \phi K^+ K^-$

φ(2170): resonant of φKK

• A hint for a resonance around $\Lambda\overline{\Lambda}$ threshold

- ✓ Mass = 2232±3.5MeV;
- ✓ Width = 7.5(+13.5) MeV
- Three body system **\ \ ** KK: ×

$e^+ e^- \rightarrow \phi K^+ K^-$

m_{KK} @ φK+K✓ (b) m_{KK} < 1.06GeV
✓ (c) 1.06 < m_{KK} < 1.45GeV
✓ (d) 1.45 < m_{KK} < 1.6GeV
φf₀(1370) and φf₂'(1525)
✓ φf₀(600): φ(1680)

✓ $\phi f_0(980)$: $\phi(2170)$

2018/6/20

$e^+ e^- \rightarrow K^+ K^-$

● K⁺K⁻ @ **φ**(2170)

✓ Obvious discrepancy between different theory models
 ✓ isoscalar: ω*/φ*; isovector: ρ*
 σ(e+e→K+K⁻) @ [2.0-3.08]GeV

2018/6/20

$e^+ e^- \rightarrow K^+ K^-$

Compare K⁺K⁻ resonance

J^{PC}=1⁻⁻ vector: ω*/φ*/ρ*
ρ(2150) @ e⁺e⁻ collision
φ(2150) experimental results

K⁺K⁻ resonance maybe a ρ(2150)
φ(2170) → K⁺ K⁻: NO

$e^+ \: e^{\-} \to \phi \eta$ and $\phi \eta$ '

Reviewd φη and φη' inside BESIII
 2018/6/20 Wenbiao USTC

$e^+ \: e^{\scriptscriptstyle -} \to K \: K \: \pi \: \pi$

- $e^+e^- \rightarrow KK\pi\pi$: important to distinguish $\phi(2170)$ theory models • BABAR: K^{*}(892), K₂^{*}(1430), K₁(1270) and K₁(1400) • J/ $\psi \rightarrow \eta \phi(2170) \rightarrow \eta K^*K^*$ @ BES
- Broad K*, PWA @ R scan data

(b)

Analysis topics

Decay modes				
KK	KK ₂ *(1430)			
K^*K	φη			
K^*K^*	φ η'			
KK(1460)	$h_1(1380)\eta$			
KK*(1410)	ωη			
KK ₁ (1270)	ωη'			
KK ₁ (1400)	ρη			

• Your suggestions are welcomed

2018/6/20

Summary and outlook

- Compared with cc̄ and bb̄, ss̄ is a terra incognita
- Aspects of φ(2170) are still not fully understood
- Using BESIII R scan data, we are extensively studying $\phi(2170)$

modes	$2^{3}D_{1}s\overline{s}$		3 ³ S ₁ s s		1- s s g	
MeV	³ P ₀ model	Flux tube	Lanzhou	³ P ₀ model	Lanzhou	Flux tube
KK	9.8	23.1	40.8	0	35.8	0
K*K	1.3	11.7	35.8	20	0.1	3.7
K*K*	18.11	23.5	32.2	102	45.7	0
KK(1460)	58.3	50.2	173.5	29	30.9	0
KK*(1410)	31.9	26.0	57.3	93	49.3	23
KK ₁ (1270)	21.9	46.4	101.5	58	7.1	35.3
KK ₁ (1400)	8.6	9.4	65.9	26	41.4	70.1
KK ₂ *(1430)	10.8	15.3	23.3	9.0	25.2	15.0
φη	0	0	5.7	21	0.3	1.2
φη'	2.9	2.8	1.8	11	0.8	0.4
h ₁ (1380)η	3.6	3.5	10.4	0	2.2	0
Width	167	212	593	378	243	149

Theoretical models will be estimated or ruled out at near future 2018/6/20 Wenbiao USTC 17

$e^+ e^- \rightarrow K^+ K^- f_0(980)$

