Mass spectra for heavy tetraquark states

Wei Chen

Sun Yat-Sen University

Shanghai, June 20-23, 2018

1 Background of the exotic hadron states

2 Laplace sum rules analyses for $QQ\bar{Q}\bar{q}$ tetraquarks

3 Moment sum rules analyses for $QQ\bar{Q}\bar{Q}$ tetraquarks

(4) Decay properties of the $QQ\bar{Q}\bar{Q}$ tetraquarks

5 Summary

Overview of XYZ States

S. L. Olsen, Front. Phys. 10 (2015) 101401

- Many charmonium-like states were discovered above the open-charm thresholds.
- Their masses and decay modes are different from the pure $c\bar{c}$ charmonium states.
- Some charged Z_c states were observed, which are evidences for four-quark states (cc̄ud̄).
- They are good candidates for exotic hadron states!

Theoretical Models

- Theoretical configurations: tetraquark, molecule, hybrid,...
- Z_c states: tetraquark, molecule

• What happens as the mass of the light quarks is raised? Binding becomes stronger?

• QED analog: molecular positronium Ps₂ (bound state of $e^+e^-e^+e^-$) discovered in 2007 _{Nature 449} (09, 2007) 195–197.

Triply and fully heavy tetraquarks

 $QQ\bar{Q}\bar{q}$ and $QQ\bar{Q}\bar{Q}$ tetraquark states:

- They are far away from the mass range of the observed conventional $q\bar{q}$ hadrons and XYZ states.
- Can be clearly distinguished experimentally from the normal states.
- The light mesons $(\pi, \rho, \omega, \sigma...)$ can not be exchanged between two charmonia/bottomonia.
- The binding force comes from the short-range gluon exchange.
- A molecule configuration is not favored and thus the $QQ\bar{Q}\bar{Q}$ is a good candidate for compact tetraquark.

Background of heavy tetraquarks

Experimental events:

- Associated production of $\Upsilon(1S)D^0, \Upsilon(2S)D^0, \Upsilon(1S)D^+, \Upsilon(2S)D^+$ and $\Upsilon(1S)D_s^+$: JHEP 07, 052 (2016) (LHCb).
- J/ψJ/ψ pairs: Phys. Lett. B707, 52 (2012) (LHCb); JHEP 1409, 094(2014) (CMS); Phys. Rev. D90, 111101 (2014) (D0).
- $J/\psi \Upsilon(1S)$ events: Phys. Rev. Lett. 116, 082002 (2016) (D0); K. Dilsiz's talk at APS April Meeting 2016 on behalf of CMS, see https://absuploads.aps.org/presentation.cfm?pid=11931.
- $\Upsilon(1S)\Upsilon(1S)$ pairs: JHEP 05, 013 (2017) (CMS).

Theoretical works:

- Quark-Gluon models: Prog. Theor. Phys. 54, 492 (1975); Zeit. Phys. C7, 317 (1981).
- Potential model: Phys.Rev. D25, 2370 (1982); Phys. Lett. B123, 449 (1983).
- MIT bag model: Phys. Rev. D32, 755 (1985).
- Hyperspherical harmonic formalism: Phys. Rev. D73, 054004 (2006).
- BS or Schroedinger Eqs: Phys.Rev.D86, 034004 (2012); Phys.Lett.B718, 545 (2012).
- Recent studies: arXiv:1605.01134; 1612.00012;Phys.Lett. B773 (2017) 247-251; PRD95,

034011 (2017); EPJC77, 432 (2017); arXiv:1706.07553;1709.09605;1710.02540;1710.03236.

Search for X_{bbbb} in CMS:

- Some recent theoretical works predict the existence of the stable $bb\bar{b}\bar{b}$ tetraquark state below $\eta_b\eta_b$ threshold.
- Preliminary observation of a peak around 18.4 GeV in four leptons channel at CMS (Thesis work).

• If it is a real physics effect, such a $X_{bb\bar{b}\bar{b}}$ state will be the first new hadron state below two-meson threshold.

Search for *X*_{bbbb} in LHCb (LHCb-PAPER-2018-027):

• No significant excess was seen at LHCb at any mass hypothesis in [16, 26] GeV.

QCD Sum Rules

• Study two-point correlation function of current $J_{\mu}(x)$ with the same quantum numbers with hadron state:

$$\Pi_{\mu
u}(q^2)=i\int d^4x e^{iq\cdot x} \langle \Omega | \, T[J_\mu(x)J_
u^\dagger(0)] | \Omega
angle$$

• Classify states |X
angle by coupling to current $\langle \Omega|J_{\mu}(x)|X
angle
eq 0$

• Hadron level: described by the dispersion relation

$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int \frac{\operatorname{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s) = \sum_n \delta(s-m_n^2) \langle 0|J|n \rangle \langle n|J^{\dagger}|0 \rangle$$

QCD Sum Rules

• Quark-gluon level: evaluated via operator product expansion(OPE)

$$\rho(\mathbf{s}) = \rho^{pert}(\mathbf{s}) + \rho^{\langle \bar{q}q \rangle}(\mathbf{s}) + \rho^{\langle GG \rangle}(\mathbf{s}) + \rho^{\langle \bar{q}Gq \rangle}(\mathbf{s}) + \dots$$

- Apply Borel transform to correlation functions
- Quark-hadron duality: Laplace Sum Rules with QCD spectral function

$$\mathcal{L}_{k}\left(s_{0}, M_{B}^{2}\right) = \int_{4m_{Q}^{2}}^{s_{0}} ds e^{-s/M_{B}^{2}} \rho(s) s^{k} = f_{X}^{2} m_{X}^{2k} e^{-m_{X}^{2}/M_{B}^{2}}$$

Interpolating currents for $QQ\bar{Q}\bar{q}$ tetraquarks

• Interpolating currents with $J^P = 0^+$:

$$\begin{split} J_1 &= Q_{1a}^T C \gamma_5 Q_{2b} \left(\bar{Q}_{3a} \gamma_5 C \bar{q}_b^T + \bar{Q}_{3b} \gamma_5 C \bar{q}_a^T \right), \\ J_2 &= Q_{1a}^T C \gamma_\mu Q_{2b} \left(\bar{Q}_{3a} \gamma^\mu C \bar{q}_b^T + \bar{Q}_{3b} \gamma^\mu C \bar{q}_a^T \right), \\ J_3 &= Q_{1a}^T C \gamma_5 Q_{2b} \left(\bar{Q}_{3a} \gamma_5 C \bar{q}_b^T - \bar{Q}_{3b} \gamma_5 C \bar{q}_a^T \right), \\ J_4 &= Q_{1a}^T C \gamma_\mu Q_{2b} \left(\bar{Q}_{3a} \gamma^\mu C \bar{q}_b^T - \bar{Q}_{3b} \gamma^\mu C \bar{q}_a^T \right). \end{split}$$

• Interpolating currents with $J^P = 1^+$:

$$\begin{split} J_{1\mu} &= Q_{1a}^{T} C \gamma_{5} Q_{2b} \left(\bar{Q}_{3a} \gamma_{\mu} C \bar{q}_{b}^{T} + \bar{Q}_{3b} \gamma_{\mu} C \bar{q}_{a}^{T} \right), \\ J_{2\mu} &= Q_{1a}^{T} C \gamma_{\mu} Q_{2b} \left(\bar{Q}_{3a} \gamma_{5} C \bar{q}_{b}^{T} + \bar{Q}_{3b} \gamma_{5} C \bar{q}_{a}^{T} \right), \\ J_{3\mu} &= Q_{1a}^{T} C \gamma_{5} Q_{2b} \left(\bar{Q}_{3a} \gamma_{\mu} C \bar{q}_{b}^{T} - \bar{Q}_{3b} \gamma_{\mu} C \bar{q}_{a}^{T} \right), \\ J_{4\mu} &= Q_{1a}^{T} C \gamma_{\mu} Q_{2b} \left(\bar{Q}_{3a} \gamma_{5} C \bar{q}_{b}^{T} - \bar{Q}_{3b} \gamma_{5} C \bar{q}_{a}^{T} \right). \end{split}$$

For the scalar $QQ\bar{Q}\bar{q}$ tetraquarks:

System	Currents	$s_0 \left({ m GeV}^2 \right)$	$\left[M_{B,min}^2, M_{B,max}^2\right]$	m(GeV)
bcbą	<i>j</i> 1	133	[15, 18]	11.4 ± 0.6
	<i>j</i> 2	136	[15, 18]	11.3 ± 0.3
	<i>j</i> 3	142	[15, 18]	11.5 ± 0.3
	j4	141	[15, 18]	11.4 ± 0.4
ccbā	<i>j</i> 1	70	[8, 11]	8.0 ± 0.3
	j4	73	[8, 11]	8.2 ± 0.3
ccēą	<i>j</i> 1	29	[5, 8]	5.1 ± 0.2
	j4	30	[5, 8]	5.1 ± 0.2
bbbā	<i>j</i> 1	189	[16, 19]	13.5 ± 0.4
	<i>j</i> 4	198	[16, 19]	13.7 ± 0.3

W. Chen, J. F. Jiang, S. L. Zhu, Phys.Rev. D96 (2017), 094022.

Wei Chen

System	Currents	$s_0 \left({ m GeV}^2 ight)$	$M_{B,min}^2, M_{B,max}^2$	m(GeV)
bcbā	$j_{1\mu}$	142	[15, 18]	11.5 ± 0.5
	$j_{2\mu}$	136	[15, 18]	11.3 ± 0.4
	$j_{3\mu}$	144	[15, 18]	11.6 ± 0.4
	$j_{4\mu}$	140	[15, 18]	11.4 ± 0.5
ccБą	<i>j</i> 1µ	71	[8, 11]	8.1 ± 0.3
	$j_{4\mu}$	73	[8, 11]	8.2 ± 0.3
ccēą	$j_{1\mu}$	30	[5, 8]	5.1 ± 0.2
	$j_{4\mu}$	30	[5, 8]	5.1 ± 0.2
bbbā	$j_{1\mu}$	189	[16, 19]	13.5 ± 0.4
	$j_{4\mu}$	189	[16, 19]	13.5 ± 0.4

For the axial-vector $QQ\bar{Q}\bar{q}$ tetraquarks: (Phys.Rev. D96 (2017), 094022)

- Both the $J^P = 0^+$ and 1^+ triply bottomed $bb\bar{b}\bar{q}$ tetraquarks are lower than the thresholds $T_{\eta_b B} = 14.68 \text{GeV}$ and $T_{\eta_b B^*} = 14.72 \text{GeV}$.
- They cannot decay into a bottomonia plus a $B^{(*)}$ meson.
- The process $bbar{b}ar{q} o (bar{q}) + (qar{q})$ may contribute significantly.
- The electromagnetic and weak decays are important, such as $bb\bar{b}\bar{q} \rightarrow \bar{B}^{(*)}\gamma$, $J/\psi \Upsilon K$ processes.

Moment Sum Rules

• Define moments in Euclidean region $Q^2 = -q^2 > 0$:

$$\begin{split} M_n(Q_0^2) &= \frac{1}{n!} \left(-\frac{d}{dQ^2} \right)^n \Pi(Q^2)|_{Q^2 = Q_0^2} \\ &= \int_{m_H^2}^\infty \frac{\rho(s)}{(s+Q_0^2)^{n+1}} ds = \frac{f_X^2}{(m_X^2 + Q_0^2)^{n+1}} \big[1 + \delta_n(Q_0^2) \big] \,, \end{split}$$

where $\delta_n(Q_0^2)$ contains the higher states and continuum. • Ratio of the moments

$$r(n, Q_0^2) \equiv \frac{M_n(Q_0^2)}{M_{n+1}(Q_0^2)} = (m_X^2 + Q_0^2) \frac{1 + \delta_n(Q_0^2)}{1 + \delta_{n+1}(Q_0^2)}.$$

Limitations for (n, ξ) parameter space:

$$\xi = Q_0^2/16m_c^2$$
, for $ccar{c}ar{c}$ system;
 $\xi = Q_0^2/m_b^2$, for $bbar{b}ar{b}$ system.

- Small ξ : higher dimensional condensates give large contributions to $M_n(Q_0^2)$, leading to bad OPE convergence.
- Large ξ : slower convergence of $\delta_n(Q_0^2)$. This can be compensated by taking higher derivative *n* for the lowest lying resonance to dominate.
- Large *n*: moving further away from the asymptotically free region. The OPE convergence would also become bad.
- Requiring Π^{⟨GG⟩}(s) ≤ Π^{pert}(s) to obtain an upper limit n_{max}, which will increase with respect to ξ.
- Good (n, ξ) region: the lowest lying resonance dominates the moments while the OPE series has good convergence.

$$n_{max} = 75, 76, 77, 78$$
 for $\xi = 0.2, 0.4, 0.6, 0.8$

- Mass for scalar $bb\overline{b}\overline{b}$ tetraquark: mass curves have plateaus at $(n,\xi) = (48,0.2), (49,0.4), (49,0.6), (50,0.8).$
- Hölder's inequality:

 $m_{X_{bb\bar{b}\bar{b}}} = (18.45 \pm 0.15) \, {
m GeV}.$

W. Chen, et. al, Phys.Lett. B773 (2017) 247-251.

JPC	Currents	$m_{X_c}(\text{GeV})$	$m_{X_b}(\text{GeV})$
0++	J_1	$\textbf{6.44} \pm \textbf{0.15}$	18.45 ± 0.15
	J_2	6.59 ± 0.17	18.59 ± 0.17
	J_3	6.47 ± 0.16	18.49 ± 0.16
	J_4	$\textbf{6.46} \pm \textbf{0.16}$	18.46 ± 0.14
	J_5	$\textbf{6.82} \pm \textbf{0.18}$	19.64 ± 0.14
1^{++}	$J_{1\mu}^{+}$	$\textbf{6.40} \pm \textbf{0.19}$	18.33 ± 0.17
	$J_{2\mu}^{\mp}$	$\textbf{6.34} \pm \textbf{0.19}$	18.32 ± 0.18
1^{+-}	$J_{1\mu}^{-}$	$\textbf{6.37} \pm \textbf{0.18}$	18.32 ± 0.17
	$J_{2\mu}^{\mp}$	6.51 ± 0.15	18.54 ± 0.15
2++	$J_{1\mu\nu}$	$\textbf{6.51} \pm \textbf{0.15}$	18.53 ± 0.15
	$J_{2\mu u}$	$\textbf{6.37} \pm \textbf{0.19}$	18.32 ± 0.17
0-+	<i>ı</i> +	6.04 0.10	10 77 0 10
0	J_1'	6.84 ± 0.18	18.77 ± 0.18
	J_2	0.85 ± 0.18	18.79 ± 0.18
0	J_1^-	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
1^{-+}	$J_{1\mu}^{+}$	$\textbf{6.84} \pm \textbf{0.18}$	18.80 ± 0.18
	$J^+_{2\mu}$	$\textbf{6.88} \pm \textbf{0.18}$	18.83 ± 0.18
1	$J^{-}_{1\mu}$	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
	$J_{2\mu}^{-}$	$\textbf{6.83} \pm \textbf{0.18}$	18.77 ± 0.16

Mass spectra for the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks:

W. Chen, et. al, Phys.Lett. B773 (2017) 247-251.

Spontaneous dissociation thresholds:

Decay behavior: $bb\bar{b}\bar{b}$ tetraquarks

- $X_{bb\bar{b}\bar{b}} \rightarrow (b\bar{b}) + (b\bar{b})$: kinematically forbidden.
- $X_{bb\bar{b}\bar{b}} \rightarrow (bbq) + (\bar{b}\bar{b}\bar{q})$: kinematically forbidden.
- $X_{bb\bar{b}\bar{b}} \rightarrow (bqq) + (\bar{b}\bar{q}\bar{q})$: suppressed by two light quark pair creation.
- $X_{bb\bar{b}\bar{b}} \rightarrow (q\bar{b}) + (b\bar{q})$: **possible** in $B^{(*)}\bar{B}^{(*)}$ final states, with large phase space.
- $X_{bb\bar{b}\bar{b}} \rightarrow (b\bar{b}) + \gamma$: electromagnetic decay via $b\gamma_{\mu}\bar{b} \rightarrow \gamma$.
- $X_{bb\bar{b}\bar{b}} \rightarrow \Upsilon(1S)X \rightarrow l^+l^-l^+l^-$: multi-lepton final states could provide clean signals although the branching fraction may be small.

• These *bbbb* states are expected to be very narrow. They are good candidates for compact tetraquarks, if they do exist.

Decay behavior: cccc tetraquarks

- $cc\bar{c}\bar{c} \rightarrow (ccq) + (\bar{c}\bar{c}\bar{q})$: kinematically forbidden.
- $cc\bar{c}\bar{c} \rightarrow (cqq) + (\bar{c}\bar{q}\bar{q})$: suppressed by two light quark pair creation.
- ccc̄c̄ → (cc̄) + (cc̄): charm quark pair rearrangement or annihilation (suppressed). Phase space is small.
- $cc\bar{c}\bar{c} \rightarrow (q\bar{c}) + (c\bar{q})$: possible via a heavy quark pair annihilation and a light quark pair creation, with large phase space.
- $cc\bar{c}\bar{c}(L=1) \rightarrow cc\bar{c}\bar{c}(L=0) + (q\bar{q})_{I=0}$: OZI forbidden.

JPC	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_{c}(1S)\chi_{c1}(1P), J/\psi h_{c}(1P)$
0-+	$\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$	${\sf J}/\psi{\sf J}/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_{c}(1S)$
1++	${f J}/\psi{f J}/\psi$	$J/\psi h_{c}(1P), \eta_{c}(1S)\chi_{c1}(1P), \\ \eta_{c}(1S)\chi_{c0}(1P)$
1^{+-}	$J/\psi\eta_{c}(1S)$	$J/\psi\chi_{c0}(1P), \ J/\psi\chi_{c1}(1P), \ \eta_{c}(1S)h_{c}(1P)$
1^{-+}	$J/\psi h_c(1P)$, $\eta_c(1S)\chi_{c1}(1P)$	_
1	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$	$J/\psi\eta_{c}(1S)$

Summary

- We have calculated the mass spectra for the triply heavy $QQ\bar{Q}\bar{q}$ and fully heavy $QQ\bar{Q}\bar{Q}$ tetraquark states.
- The $X_{bb\bar{b}\bar{q}}$ and $X_{bb\bar{b}\bar{b}}$ states are below the $\eta_b B^{(*)}$ and $\eta_b \eta_b$ thresholds respectively, and thus are expected to be narrow. They are good candidate compact tetraquarks.
- The X_{bbbq̄} states could be searched for in final states B^(*)+light meson, B^(*)γ, J/ψΥK.
- The possible CMS observation of $X_{bb\bar{b}\bar{b}}$ may be the first new hadron state below two-meson threshold, if it is a real physics effect.
- The $X_{bb\bar{b}\bar{b}}$ states could be searched for in final states $B^{(*)}\bar{B}^{(*)}$, bottomonia+ γ , $l^+l^-l^+l^-$.

Thank you for your attention!