

Measurement of the Effective Weak-mixing Angle $\sin^2 \theta_{eff}^l$ in $p\bar{p} \to Z/\gamma^* \to l^+l^-$

Chen Wang

University of Science and Technology of China 2018.06.22

- \blacktriangleright Weak-mixing Angle sin² θ_W
 - > One of the SM fundamental parameters
 - > Spontaneous symmetry breaking to produce Z and γ
 - Relationships between other electron-weak parameters

$$\sin^2 \theta_W = \left(\frac{e}{g}\right)^2 = 1 - \frac{M_W^2}{M_Z^2}$$

Precise test of SM

- \succ Effective Weak-mixing angle $\sin^2 \theta_{eff}^l$
 - > Absorb high order effect

$$\sin^2 \theta_{eff}^l = Re[k_e(s, t, \sin^2 \theta_W)] \sin^2 \theta_W$$

- Effective Weak-mixing angle measurements
 - > The worst one among all electroweak fundamental parameters

Parameters	Relative uncertainty from experiment
Fine structure constant α	$\sim 10^{-8}$
Fermi-constant G_F	$\sim 10^{-5}$
Z boson mass M_Z	$\sim 10^{-5}$
Weak-mixing angle $\sin^2 \theta_W$	Best single measurement: $\sim 10^{-3}$
	LEP/SLD combine: $6 * 10^{-4}$

> Over 3σ difference between LEP and SLD

 $\sin^2 \theta_{eff}^l = 0.23098 \pm 0.00026(SLD)$ $\sin^2 \theta_{eff}^l = 0.23221 \pm 0.00029(LEP)$

Other independent measurement needed

> Overview

> 2017, $8.6fb^{-1}$ RunIIb Muon Channel Precision:0.00064 Best muon channel to date

D0 combination
Precision:0.00040
Best single experiment to date
Best light-quark measurement

2008, 1.1fb⁻¹ RunIIa
Electron Channel
Precision:0.0019
First hadron measurement

 \succ 2011, 1.1 fb^{-1} RunIIa

 $+3.9 f b^{-1}$ RunIIb

Electron Channel

Precision:0.0010

 2015, 1.1fb⁻¹ RunIIa +8.6fb⁻¹ RunIIb
Electron Channel
Precision:0.00047
Best single channel to date
First time close to LEP/SLD > All D0 RunII weak-mixing angle measurements

> Strategy

> Measured from raw $A_{FB}(M_{ll})$

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

$$M_{ll}^2 = 2E_1 E_2 (1 - \cos\theta_{12})$$

- Statistical dominated
- > PDF uncertainty
- Systematic uncertainty:Lepton energy calibration

Chen Wang

> $1.1 f b^{-1}$ electron channel measurement (2008)

First hadron measurement

- Tevatron RunIIa, 35K events
- > Measured by observing $A_{FB}(M_{ll})$
- ➢ PDF:CTEQ6L
- Simple higher-order correction(ZGRAD2)

 $\begin{aligned} \sin^2 \theta_{eff}^l &= 0.2326 \pm 0.0019 \\ &= 0.2326 \pm 0.0018(stat.) \pm 0.0003(syst.) \pm 0.0005(\text{PDF}) \end{aligned}$

	$1.1 f b^{-1}$ results	Theoretical expectation for $10fb^{-1*}$
σ_{stat}	0.0018	0.0005
σ_{syst}	0.0003	0.00007
σ_{PDF}	0.0005	0.00007
σ_{Total}	0.0019	~0.0005

*arXiv:hep-ex/0011009

> $5fb^{-1}$ electron channel measurement (2011)

Mid-term estimation

- Tevatron RunIIa+part of RunIIb, 160K events
- > Measured by observing $A_{FB}(M_{ll})$
- > PDF:CTEQ6L

 $\begin{aligned} \sin^2 \theta_{eff}^l &= 0.2309 \pm 0.0010 \\ &= 0.2309 \pm 0.0008(stat.) \pm 0.00029(syst.) \pm 0.00048(\text{PDF}) \end{aligned}$

	$5fb^{-1}$ results	Theoretical expectation for $10 f b^{-1}$	Expectation for $10fb^{-1}$ using $5fb^{-1}$ results
σ_{stat}	0.0008	0.0005	> 0.0006
σ_{syst}	0.00029	0.00007	0.0003
σ_{PDF}	0.00048	0.00007	~0.00048
σ_{Total}	0.0010	~0.0005	~0.00085

Systematic uncertainty

- Lepton calibration
 - > Affects $A_{FB}(M_{ll})$ same with $\sin^2 \theta_W$ does
 - Very sensitive

 $\frac{\delta M}{M}/\sigma_{\sin^2\theta_W} \sim 0.01\%/0.00003$

> $9.7 f b^{-1}$ electron channel measurement (2015)

- First high precision measurement
- Best electron channel measurement to date
 - Tevatron RunII, ~560K events
 - > Measured by observing $A_{FB}(M_{ll})$
 - ➢ PDF: NNPDF2.3/3.0
- Improved by novel electron calibration method*

 $\sin^2 \theta_{eff}^l = 0.23137 \pm 0.00047$ = 0.23137 \pm 0.00043(stat.) \pm 0.00009(syst.) \pm 0.00017(PDF)

	$9.7 f b^{-1}$ results	Theoretical expectation for $10fb^{-1}$	Expectation for $10fb^{-1}$ using $5fb^{-1}$ results
σ_{stat}	0.00043	0.0005	> 0.0006
σ_{syst}	0.00009	0.00007	0.0003
σ_{PDF}	0.00017	0.00007	~0.0002
σ_{Total}	0.00047	~0.0005	~0.00085

> $8.6fb^{-1}$ muon channel measurement (2017)

- Best muon channel measurement to date
 - ➤ Tevatron RunIIb, ~480K events
 - > Measured by observing $A_{FB}(M_{ll})$
 - PDF: NNPDF3.0

 $\sin^2 \theta_{eff}^l = 0.23016 \pm 0.00064$

 $= 0.23016 \pm 0.00059(stat.) \pm 0.00006(syst.) \pm 0.00024(PDF)$

> Originally not in the plan

Charge-dependent muon momentum scale

DZero combination (2017)

 $\sin^2 \theta_{eff}^l = 0.23095 \pm 0.00040$ = 0.23095 \pm 0.00035(stat.) \pm 0.00007(syst.) \pm 0.00019(PDF)

- Higher order correction
 - Straight forward high order corrections
 - ZFITTER-based form factor calculation
 - ResBos vs. PYTHIA comparision

	$\Delta sin^2 heta_{eff}^l$
Different effective coupling for u and d quarks	+0.00008
Mass-scale dependence and complex calculation	+0.00014
Total	+0.00022

 $\Delta \sin^2 \theta_W = +0.00022 \pm 0.00004 \text{(Dominated by } m_t\text{)}$

> Summary

 $\sin^2 \theta_{eff}^l = 0.23095 \pm 0.00040$ = 0.23095 \pm 0.00035(stat.) \pm 0.00007(syst.) \pm 0.00019(PDF)

- Best single experiment to date
- Best light-quark measurement
- High precision calibration
 - Both statistical uncertainty and systematic uncertainty

Higher order correction

- Straight forward higher order corrections
- \succ Uncertainty dominated by m_t