

山东大学•粒子物理与粒子辐照教育部重点实

Spectral Measurement of Anti-neutrino Disappearance via Neutron Capture on Hydrogen at Daya Bay

Chao Li (Shandong University)

on behalf of the Daya Bay Collaboration

Neutrino Mixing

> Neutrino mixing:

Pontecorvo-Maki-Nakagawa-Sakata (1962) $|\nu_{\alpha}\rangle = \sum_{i=1} U_{\alpha i}^{*} |\nu_{i}\rangle$ Flavor Mass Eigen state Eigen state $\begin{array}{ccc}
\sin\theta_{12} & 0\\
\cos\theta_{12} & 0
\end{array}$ $0 \quad \sin \theta_{13} e^{-i\delta}$ $\cos \theta_{12}$ 0 $\cos\theta_{13}$ $\begin{array}{ccc} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{array}$ $-\sin\theta_{12}$ 0 0 $\sin \theta_{12} e^{i\delta}$ $\cos\theta_{13}$ 0 0 bestfit value($\pm 1\sigma$) Parameter bestfit value($\pm 1\sigma$) Parameter $\sin^2 2\theta_{12}$ 0.846 ± 0.021 Δm_{21}^2 $(7.53\pm0.18)\times10^{-5}\,\mathrm{eV}^2$ PDG2014 $0.999_{-0.018}^{+0.001}$ (NH) $\sin^2 2\theta_{23}$ Δm_{32}^2 $(2.44 \pm 0.06) \times 10^{-3} \text{eV}^2$ (NH) $(9.3\pm0.8)\times10^{-2}$ $\sin^2 2\theta_{13}$

• Summary of neutrino mixing angle

 Summary of neutrino mass-squared difference

Dayabay Experiment

3

Reactor Antineutrino Oscillation

No CP phase term Negligible matter effect

Far / Near relative measurement

Measuring Mass Splitting via Spectral Distortion

Antineutrino Detection

• Inverse Beta Decay (IBD): $\overline{v}_e + p \rightarrow e^+ + n$ $e^+ + e^- \rightarrow 2\gamma$ $n + H \rightarrow H + \gamma(2.2MeV)$ Prompt energy $\approx E_{\overline{v}_e} - 0.8MeV$ Delayed energy : 2.2MeV

- https://www.neutron.capture.on.hydrogen) analysis
 - advantage
 - equivalent statistics to the nGd sample
 - largely different systematic errors
 - □ challenge
 - larger energy leakage in LS region
 - 12% (51%) accidental background at near (far) site

nH Signal and Backgrounds

> nH IBD pair selection criteria:

- Muon veto cut
- Prompt energy cut : [1.5,12]MeV
- **D**elayed energy cut : $\mu \pm 3\sigma$
- **C**apture time cut : [1,400]us
- Distance(prompt and delayed) cut : [0,500]mm
- Multiplicity Cut

Main Backgrounds:

B/S:~0.3%

$site = 10^{5}$ 10^{5} 10^{4} 10^{4} 10^{4} 10^{2} 10^{2} 10^{2} 2 4 6 8 10 10 10^{2} 2 4 6 8 10 12 10 10 12 10 12 10

Energy Response Model

 Non-linearity model built based on various gamma peaks and the continuous ¹²B spectrum

Energy Reconstruction

- Energy resolution: $\frac{\sigma_E}{E} = \sqrt{a^2 + \frac{b^2}{E} + \frac{c^2}{E^2}}$
 - a : Residual Spacial Non-Uniformity Resolution
 - **b** : Photon Statistics
 - **D** c : Dark Noise/PMT effects
- AD-by-AD differences:
 - Different calibration source used .
 - Relative energy scale uncertainty < 0.2% (0.4%) for nGd (nH)

From nGd Response to nH Response

Larger energy leakage :

- IAV effect
- gamma escape in LS region(dominating)
- modeled by Monte-Carlo

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \dots n - 1 \rightarrow n$

 $E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow E_3 \dots \dots E_{n-1} \rightarrow E_n$

Only Energy deposit in scintillator could transform to visible energy

$$E_k \rightarrow E_{k+1} : E_{vis} = E_k f_{scin}(E_k) - E_{k+1} f_{scin}(E_{k+1})$$

e⁺/ γ steps simulation diagram

nH Energy Response Model

Model construction

- Energy leakage
- Energy non-linearity
- Non-uniformity
- Energy resolution

Model Validation Using B12 Data

LS region comparison B12 Decay spectrum (in LS): χ^2 = 70.7/54 bins data B12 N12 Bestfit

10

12

13

18

14 16 Beconstructed F

Systematic Errors

	name	description	sigma value	correlation	counts
Reactor part	$\alpha_r^{^{th}}$	thermal power	0.5%	Uncorrelated between reactors	6
	$lpha_r^{eq}$	non-equilibrium	30%	Uncorrelated between reactors	6
	α_r^{sp}	spent-fuel	100%	Uncorrelated between reactors	6
	α_r^f	fission fraction	5%	Uncorrelated between reactors	6
	$\alpha_{\scriptscriptstyle R}$	bin-to-bin correlated	free	Correlated between reactors	1
	$\alpha_{\scriptscriptstyle R}^{\scriptscriptstyle i}$	bin-to-bin unco		between reactors	26
Detector part	${\pmb lpha}_d^{e\!f\!f}$	relative detection efficiency	0.44%	Uncorrelated between ADs	8
	$lpha_{d}^{\scriptscriptstyle IAV}$	IAV effect	100%	Uncorrelated between ADs	8
	α_l^{NL}	non-linearity	100%	Correlated between ADs	4
	$lpha_{d}^{scale}$	relative energy scale	0.5%	Uncorrelated between ADs	8
Background part	$lpha^{d}_{ m acc}$	accidental background	0.2%,0.18%,0.07%	Uncorrelated between ADs	8
	$lpha_{li9}^{hall}$	Li9 background	43%,45%,41%	Uncorrelated between sites	3
	$lpha_{\mathit{fast-n}}^{\mathit{hall}}$	fast-n background	11%,11%,18%	Uncorrelated between sites	3
	$\alpha_{_{AmC}}$	AmC background	50%	Correlated between ADs	1

Spectral Distortion

Predicted(no oscillation) and obversed(subtracted backgrounds)

- determined by bestfit.
- > Data with only statistical errors.

Spectrum distortion

- baseline related
- energy related

Summary

- Independent mearsurement of $sin^22\theta_{13}$ and Δm^2_{ee} from nH
 - Find baseline and energy related spectrum distortion
 - Plan to present final result this summer

• Thank you for your attention !