New physics and its interference effect

万霞 陕西师范大学(SNNU),西安 合作者: 陈喧、李刚(PKU),王由凯、贺华荣(SNNU)

第十届全国会员代表大会暨学术年会

- Motivation of New Physics and its interference with Standard Model.
- The interference @LHC in channels of
 - 1. $H \to \gamma \gamma$ 2. $H \to \gamma Z \to \gamma \ell \ell$ 3. $H \to ZZ \to 4\ell$

New physics before LHC

Neutrino mass

- Dark matter, Dark
 energy
- Matter-antimatter asymmetry
- Gravity

- Higgs mass hierarchy
- Number of parameters
 - Strong CP problem

New Models: Supersymmetry Models, Extra dimension, GUT, String Theory,

Good

Where is New physics @ LHC

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

$\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^2$ $\sqrt{5}$							$\gamma_{5} = 8, 13 \text{ lev}$
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QBH} \\ \text{ADD BH } \text{high } \sum \rho_T \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \gamma\gamma \\ \text{Bulk RS } G_{KK} \to WW \to qq\ell\nu \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $1 J$ $\geq 2 b, \geq 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mo 7.75 TeV n = 2 Ms 8.6 TeV n = 3 HLZ NLO Mth 8.9 TeV n = 6 Mth 8.2 TeV n = 6, M_D = 3 TeV Mth 9.55 TeV n = 6, M_D = 3 TeV Mth 9.55 TeV n = 6, M_D = 3 TeV KK mass 1.75 TeV k/M _{Pl} = 0.1 KK mass 1.6 TeV Tier (1,1), B(A ^(1,1))	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 rot BH 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 → tt) = 1 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{HVT } V' \to WV \to qqqq \text{ model} \\ \text{HVT } V' \to WH/ZH \text{ model } B \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \end{array} \\ B 0 \ e, \mu \\ multi-channe \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J - 2 J ≥1 b, 0-1 j ≥ 1 b, 1 J	- - Yes - Yes -	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 2.4 TeV Z' mass 2.0 TeV Y' mass 2.0 TeV V' mass 5.1 TeV V' mass 3.5 TeV Y' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓ qq Cl uutt	_ 2 e, μ 2(SS)/≥3 e,μ	2 j _ µ ≥1 b, ≥1 j	– – Yes	37.0 36.1 20.3	Λ 21.8 TeV η _{τι} Λ 40. 40. Λ 4.9 TeV C _{RR} = 1	1703.09217 1 TeV η _{LL} ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)) 0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4j $\leq 1j$ $1 J, \leq 1j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.5 TeV g_q=0.25, g_t=1.0, ml m _{med} 1.2 TeV g_q=0.25, g_t=1.0, ml M. 700 GeV m(\chi) < 150 GeV	χ) < 400 GeV ATLAS-CONF-2017-060 (χ) < 480 GeV
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV $\beta = 1$ LQ mass 1.05 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\; TT \rightarrow Ht + X \\ VLQ\; TT \rightarrow Zt + X \\ VLQ\; TT \rightarrow Wb + X \\ VLQ\; BB \rightarrow Hb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; BB \rightarrow Wt + X \\ VLQ\; QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 1 \\ \geq 2 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \\ \downarrow 4 \ j \end{array}$	j Yes j Yes /2j Yes j Yes - /2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV $\mathcal{B}(T \rightarrow Ht) = 1$ T mass 1.16 TeV $\mathcal{B}(T \rightarrow Zt) = 1$ T mass 1.35 TeV $\mathcal{B}(T \rightarrow Wb) = 1$ T mass 700 GeV $\mathcal{B}(B \rightarrow Hb) = 1$ B mass 790 GeV $\mathcal{B}(B \rightarrow Hb) = 1$ B mass 790 GeV $\mathcal{B}(B \rightarrow Zb) = 1$ Q mass 690 GeV $\mathcal{B}(B \rightarrow Wt) = 1$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j –	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q' mass 6.0 TeV only u' and d'', $\Lambda =$ q' mass 5.3 TeV only u' and d'', $\Lambda =$ b' mass 2.3 TeV $f_{\vec{x}} = f_L = f_R = 1$ t' mass 3.0 TeV $f_{\vec{x}} = f_L = f_R = 1$ t' mass 1.6 TeV $\Lambda = 1.6$ TeV	m(q*) 1703.09127 m(q*) CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ 2,3,4 e, μ (SS 3 e, μ, τ 1 e, μ - - -	2 j S) - 1 b - √s = 1	- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N° mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$\begin{array}{c c} \text{1506.06020} \\ \hline \\ \text{TLAS-CONF-2017-053} \\ \hline \\ t^{\pm} \rightarrow \ell \tau) = 1 \\ \hline \\ \text{5.6} \\ \text{1504.04188} \\ \text{1509.08059} \\ \hline \end{array}$
	· · · · · · · · · · · · · · · · · · ·	s = 8 TeV	√s = 1	3 TeV		10^{-1} 1 10 Mass sc	ale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Around 100GeV~1TeV, effectively new physics is highly suppressed !

Interference effect may become relatively large

 $|\mathcal{M}_{\rm SM} + \mathcal{M}_{\rm new}|^2 = |\mathcal{M}_{\rm SM}|^2 + |\mathcal{M}_{\rm new}|^2 + 2Re(\mathcal{M}_{\rm SM}\mathcal{M}_{\rm new}^*)$

$\sigma_{ m SM}$	$\sigma_{ m new}$	$\sigma_{interference}$		
0.533fb	0.220fb	$-0.599 \mathrm{fb}$		

Is there a new observable (method) from interference effect to probe new physics ?

1.
$$H \to \gamma \gamma$$

2. $H \to \gamma Z \to \gamma \ell \ell$
3. $H \to ZZ \to 4\ell$

XW, Youkai Wang, arXiv:1712.00267

Xuan Chen, Gang Li, XW, PRD96, 055023 (2017)

Huarong He, XW, Youkai Wang in progress

1. CP violation in $H\gamma\gamma$

$$\mathcal{L}_{h} = \frac{c_{\gamma} \cos \xi_{\gamma}}{v} h F_{\mu\nu} F^{\mu\nu} + \frac{c_{\gamma} \sin \xi_{\gamma}}{2v} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{c_{g}}{v} h G^{a}_{\mu\nu} G^{a\mu\nu}$$

$$\mathcal{M} = -e^{-ih_{3}\xi_{\gamma}}\delta_{h_{1}h_{2}}\delta_{h_{3}h_{4}}\frac{M_{\gamma\gamma}^{4}}{v^{2}}\frac{4c_{g}c_{\gamma}}{M_{\gamma\gamma}^{2} - M_{H}^{2} + iM_{H}\Gamma_{H}} + 4\alpha\alpha_{s}\delta^{ab}\sum_{f=u,d,c,s,b}Q_{f}^{2}\mathcal{A}_{box}^{h_{1}h_{2}h_{3}h_{4}} ,$$

$$\frac{d\sigma_{int}}{dM_{\gamma\gamma}} \propto \frac{(M_{\gamma\gamma}^2 - M_H^2) \operatorname{Re} (c_g c_\gamma) + M_H \Gamma_H \operatorname{Im} (c_g c_\gamma)}{(M_{\gamma\gamma}^2 - M_H^2) + M_H^2 \Gamma_H^2} \\ \times \int dz [\mathcal{A}_{box}^{++++} + \mathcal{A}_{box}^{++--}] \cos \xi_\gamma,$$

 $A_{int}(\%)$

 $f(m) = c_1 \times f_{sig}(m - \delta m) + c_2 \times f_{int}(m - \delta m),$

Interference in BSM

 $A_{int} \sim \pm 16\%$

2. CP violation in $H\gamma Z$

$$\mathcal{L}_{\rm h} = \frac{c}{v} h F_{\mu\nu} Z^{\mu\nu} + \frac{\tilde{c}}{2v} h F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{c_g}{v} h G^a_{\mu\nu} G^{a\mu\nu}$$

 $\xi = \tan^{-1}(\tilde{c}/c)$

Kinematics has no sensitivity to $\,\xi\,$

Interference

Yi Chen, etc PRD90, 113006 (2014)

Xuan Chen, Gang Li, Xia WAN PRD96, 055023 (2017)

Forward-backward Asymmetry

 $g(p_1)g(p_2) \to H(p_{12}) \to \gamma(p_3)Z(p_{45}) \to \gamma(p_3)\ell^-(p_4)\ell^+(p_5),$

$$\theta_1 = \cos^{-1} \left(-\frac{\vec{p}_3 \cdot \vec{p}_4}{|\vec{p}_3| |\vec{p}_4|} \right) \quad \vec{p}_3 \text{ in } H \text{ rest frame},$$
$$\vec{p}_4 \text{ in } Z \text{ rest frame}.$$

$$A_{FB}(s_{12}) = \frac{(\int_0^1 - \int_{-1}^0) d\cos\theta_1 \int_{-1}^1 d\cos\theta \int_{-\pi}^{\pi} d\phi_1 \frac{d\hat{\sigma}(s_{12},\theta;\theta_1,\phi_1)}{d(\cos\theta)d(\cos\theta_1)d\phi_1}}{(\int_{-1}^1) d\cos\theta_1 \int_{-1}^1 d\cos\theta \int_{-\pi}^{\pi} d\phi_1 \frac{d\hat{\sigma}(s_{12},\theta;\theta_1,\phi_1)}{d(\cos\theta)d(\cos\theta_1)d\phi_1}}$$

$$\propto 4 \operatorname{Im}[\tilde{\sigma}_{H,box}^{2 \to 2}]_{++} \sin \xi$$

AFB value

Yi Chen, etc, PRD90,113006

3. Anomalous couplings in HZZ

 $L(HZZ) \sim a_1 \frac{m_Z^2}{2} HZ^{\mu} Z_{\mu} + a_2 \frac{1}{2} HZ^{\mu\nu} Z_{\mu\nu} + a_3 \frac{1}{2} HZ^{\mu\nu} \tilde{Z}_{\mu\nu}$

Y. Gao, etc PRD81, 075022

2

Constraints from experiments

CMS, PRD92, 012004 (2014)

Interference in on-shell region

 \sqrt{s} =8 TeV, $gg \rightarrow H \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^-, M(4\ell) < 130 \text{ GeV}$

$\sigma_{ m SM}$	$\sigma_{ m new}$	$\sigma_{interference}$
0.245fb	$0.101 \mathrm{fb}$	$-0.275 \mathrm{fb}$

 $a_1=1, a_2=1$

Interference in off-shell region

SM

 $\sqrt{s}=8 \text{ TeV}, gg(\rightarrow H^*) \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^-, M(4\ell) > 220 \text{ GeV}$

 $a_1=1, a_2=1$

$\sigma_{ m SM}$	$\sigma_{ m new}$	$\sigma_{interference}$
0.45fb	0.23fb	$0.15 { m fb}$

Constraints in off-shell region

CMS data for off-shell region

CMS PAS Higg-14-002

		Full region	Signal-enriched region
	$gg + VBF \rightarrow 4\ell \text{ (signal, } \Gamma_H / \Gamma_H^{SM} = 1\text{)}$	$2.22 {}^{+0.15}_{-0.17}$	$1.20 {}^{+0.08}_{-0.09}$
	$ m gg + VBF ightarrow 4\ell$ (background)	$31.1^{+3.0}_{-3.1}$	$2.12\pm\!0.21$
(a)	$ m gg + VBF ightarrow 4\ell$ (total, $\Gamma_{ m H}/\Gamma_{ m H}^{ m SM} = 1$)	$29.6^{+2.8}_{-2.9}$	$1.73^{+0.16}_{-0.17}$
	$gg + VBF \rightarrow 4\ell$ (total, $\Gamma_H / \Gamma_H^{SM} = 15$)	$51.8^{+4.9}_{-5.0}$	13.1 ± 1.1
(b)	$qar q o 4\ell$	154.7 ± 7.4	8.6 ± 0.4
(c)	Reducible background	3.7 ± 0.6	0.44 ± 0.08
(a+b+c)	Total expected ($\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}=1$)	188.0 ± 7.9	10.8 ± 0.4
	Observed	183	8

$$a_2 \subset [-2.0, 1.4]$$

 $a_3 \subset [-1.7, 1.7]$

Summary

The interference effect of new physics are studied in three Higgs processes at LHC.

- The antisymmetric lineshape in $H \to \gamma \gamma$ could be extracted to probe *CP*-violating $H\gamma\gamma$ coupling.
- The forward-backward symmetry of the lepton in Z rest frame could totally reach as large as ~ 4% for a maximal CP violation in $H\gamma Z$ coupling.
- Constraints of anomalous HZZ couplings in Higgs off-shell region could be good complement for the experimental measurements in on-shell region.

Thanks!