New physics and its interference effect

万霞

陕西师范大学（SNNU），西安
合作者：陈喧，李刚（PKU），王由凯，贺华荣（SNNU）

第十届全国会员代表大会暨学术年会

Outline

- Motivation of New Physics and its interference with Standard Model.
- The interference @LHC in channels of

1. $H \rightarrow \gamma \gamma$
2. $H \rightarrow \gamma Z \rightarrow \gamma \ell \ell$
3. $H \rightarrow Z Z \rightarrow 4 \ell$

- Summary

New physics before LHC

- Neutrino mass
- Dark matter, Dark energy
- Matter-antimatter asymmetry
- Gravity

「 Higgs mass hierarchy ${ }^{-}$
I• Number of parameters

New Models: Supersymmetry Models, Extra dimension, GUT, |String Theory,

Where is New physics @ LHC

CMS-PAS-HIG-17-003

*Only a selection of the available mass limits on new states or phenomena is shown.
Small-radius (large-radius) jets are denoted by the letter j (J)

Around $100 \mathrm{GeV} \sim 1 \mathrm{TeV}$, effectively new physics is highly suppressed!

Interference effect may become relatively large

$$
\begin{aligned}
& \left|\mathcal{M}_{\mathrm{SM}}+\mathcal{M}_{\mathrm{new}}\right|^{2}=\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}+\left|\mathcal{M}_{\mathrm{new}}\right|^{2}+2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}} \mathcal{M}_{\mathrm{new}}^{*}\right) \\
& \text { e.g. } L(H Z Z) \sim a_{1} \frac{m_{Z}^{2}}{2} H Z^{\mu} Z_{\mu}+a_{2} \frac{1}{2} H Z^{\mu \nu} Z_{\mu \nu} \\
& \mathbf{a}_{1}=\mathbf{1}, \mathbf{a}_{2}=\mathbf{1} \\
& \qquad \begin{array}{|l|c|c|}
\hline \sigma_{\mathrm{SM}} & \sigma_{\text {new }} & \sigma_{\text {interference }} \\
\hline 0.533 \mathrm{fb} & 0.220 \mathrm{fb} & -0.599 \mathrm{fb} \\
\hline
\end{array}
\end{aligned}
$$

Is there a new observable (method) from interference effect to probe new physics?

1. $H \rightarrow \gamma \gamma$

XW, Youkai Wang, arXiv:1712.00267

3. $H \rightarrow Z Z \rightarrow 4 \ell$

Huarong He, XW, Youkai Wang in progress

1. $C P$ violation in $H \gamma \gamma$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{h}} & =\frac{c_{\gamma} \cos \xi_{\gamma}}{v} h F_{\mu \nu} F^{\mu \nu}+\frac{c_{\gamma} \sin \xi_{\gamma}}{2 v} h F_{\mu \nu} \tilde{F}^{\mu \nu} \\
& +\frac{c_{g}}{v} h G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

F. Bishara, etc. JHEP04, 084 (2014) Y. Chen, etc. PRL113, 191801 (2014)

Interference

$$
\mathcal{M}=-e^{-i h_{3} \xi_{\gamma}} \delta_{h_{1} h_{2}} \delta_{h_{3} h_{4}} \frac{M_{\gamma \gamma}^{4}}{v^{2}} \frac{4 c_{g} c_{\gamma}}{M_{\gamma \gamma}^{2}-M_{H}^{2}+i M_{H} \Gamma_{H}}+4 \alpha \alpha_{s} \delta^{a b} \sum_{f=u, d, c, s, b} Q_{f}^{2} \mathcal{A}_{b o x}^{h_{1} h_{2} h_{3} h_{4}}
$$

$$
\begin{aligned}
\frac{d \sigma_{i n t}}{d M_{\gamma \gamma}} & \propto \frac{\left(M_{\gamma \gamma}^{2}-M_{H}^{2}\right) \operatorname{Re}\left(c_{g} c_{\gamma}\right)+M_{H} \Gamma_{H} \operatorname{Im}\left(c_{g} c_{\gamma}\right)}{\left(M_{\gamma \gamma}^{2}-M_{H}^{2}\right)+M_{H}^{2} \Gamma_{H}^{2}} \\
& \times \int d z\left[\mathcal{A}_{b o x}^{++++}+\mathcal{A}_{b o x}^{++--}\right] \cos \xi_{\gamma},
\end{aligned}
$$

Interference in SM

$$
A_{i n t}\left(\xi_{\gamma}\right)=\frac{\int d M_{\gamma \gamma} \frac{d \sigma_{i n t}}{d M_{\gamma \gamma}} \Theta\left(M_{\gamma \gamma}-M_{H}\right)}{\int d M_{\gamma \gamma} \frac{d \sigma_{s i g}}{d M_{\gamma \gamma}}},
$$

$$
\Theta(x) \equiv\left\{\begin{array}{cl}
-1, & x<0 \\
1, & x>0
\end{array}\right.
$$

$\sigma_{M R}$ (GeV)	$A_{\text {int }}^{S M}$ denominator (fb)	$A_{\text {int }}^{S M}$ numerator (fb)	$A_{\text {int }}^{S M}$ $(\%)$
0	39.3	14.3	36.3
1.1	39.3	4.0	10.2
1.3	39.3	3.7	9.4
1.5	39.3	3.4	8.6
1.7	39.3	3.1	7.9
1.9	39.3	2.8	7.2

Fitting

$$
f(m)=c_{1} \times f_{\text {sig }}(m-\delta m)+c_{2} \times f_{\text {int }}(m-\delta m),
$$

Interference in BSM

$A_{\text {int }} \sim \pm 16 \%$
2. $C P$ violation in $H \gamma Z$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{h}} & =\frac{c}{v} h F_{\mu \nu} Z^{\mu \nu}+\frac{\tilde{c}}{2 v} h F_{\mu \nu} \tilde{Z}^{\mu \nu}+\frac{c_{g}}{v} h G_{\mu \nu}^{a} G^{a \mu \nu} \\
\xi & =\tan ^{-1}(\tilde{c} / c)
\end{aligned}
$$

Kinematics has no sensitivity to ξ

Interference

Xuan Chen, Gang Li, Xia WAN PRD96, 055023 (2017)

Forward-backward Asymmetry

$$
g\left(p_{1}\right) g\left(p_{2}\right) \rightarrow H\left(p_{12}\right) \rightarrow \gamma\left(p_{3}\right) Z\left(p_{45}\right) \rightarrow \gamma\left(p_{3}\right) \ell^{-}\left(p_{4}\right) \ell^{+}\left(p_{5}\right)
$$

$$
\theta_{1}=\cos ^{-1}\left(-\frac{\overrightarrow{p_{3}} \cdot \vec{p}_{4}}{\left|\vec{p}_{3}\right|\left|\vec{p}_{4}\right|}\right) \quad \begin{aligned}
& \vec{p}_{3} \text { in } H \text { rest frame }, \\
& \vec{p}_{4} \text { in } Z \text { rest frame }
\end{aligned}
$$

$$
\begin{aligned}
A_{F B}\left(s_{12}\right) & =\frac{\left(\int_{0}^{1}-\int_{-1}^{0}\right) d \cos \theta_{1} \int_{-1}^{1} d \cos \theta \int_{-\pi}^{\pi} d \phi_{1} \frac{d \hat{\sigma}\left(s_{12}, \theta, \theta_{1}, \phi_{1}\right)}{d\left(\cos \theta d d\left(\cos \theta_{1}\right) d \phi_{1}\right.}}{\left(\int_{-1}^{1}\right) d \cos \theta_{1} \int_{-1}^{1} d \cos \theta \int_{-\pi}^{\pi} d \phi_{1} \frac{\left.d \hat{\sigma}\left(s_{12}\right), \theta ; q_{1}, \phi_{1}\right)}{d(\cos \theta) d\left(\cos \theta_{1}\right) d \phi_{1}}} \\
& \propto 4 \operatorname{Im}\left[\tilde{\sigma}_{H, b o x}^{2 \rightarrow 2}\right]_{++} \sin \xi
\end{aligned}
$$

Afb value

$\mathrm{A}_{\mathrm{FB}}<1 \%$ for $\xi_{H \gamma Z}=\frac{\pi}{2}$

3. Anomalous couplings in $H Z Z$

$$
L(H Z Z) \sim a_{1} \frac{m_{2}^{2}}{2} H Z^{\mu} Z_{\mu}+a_{2} \frac{1}{2} H Z^{\mu \nu} Z_{\mu \nu}+a_{3} \frac{1}{2} H Z^{\mu \nu} \tilde{Z}_{\mu \nu}
$$

Y. Gao,etc PRD81, 075022

Constraints from experiments

Parameter	Observed
$\left(\Lambda_{1} \sqrt{\left\|a_{1}\right\|}\right) \cos \left(\phi_{\Lambda_{1}}\right)$	$[-\infty,-119 \mathrm{GeV}] \cup[104 \mathrm{GeV}, \infty]$
a_{2} / a_{1}	$[-2.28,-1.88] \cup[-0.69, \infty]$
a_{3} / a_{1}	$[-2.05,2.19]$

CMS, PRD92, 012004 (2014)

Interference in on-shell region

$a_{1}=1, a_{2}=1$	$\sqrt{s}=8 \mathrm{TeV}, g g \rightarrow H \rightarrow Z Z \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}, M(4 \ell)<130 \mathrm{GeV}$		
	$\sigma_{\text {SM }}$	$\sigma_{\text {new }}$	$\sigma_{\text {inter ference }}$
	0.245 fb	0.101 fb	-0.275fb

Interference in off-shell region

SM

$\mathbf{a}_{\mathbf{1}}=\mathbf{1}, \mathbf{a}_{\mathbf{2}}=\mathbf{1}$

$=8 \mathrm{TeV}, g g\left(\rightarrow H^{*}\right) \rightarrow Z Z \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}, M(4 \ell)>220 \mathrm{GeV}$		
σ_{SM}	σ_{new}	$\sigma_{\text {interference }}$
0.45 fb	0.23 fb	0.15 fb

Constraints in off-shell region

CMS data for off-shell region CMS PAS Higg-14-002

		Full region	Signal-enriched region
	$\mathrm{gg}+\mathrm{VBF} \rightarrow 4 \ell\left(\right.$ signal, $\left.\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}=1\right)$	$2.22_{-0.17}^{+0.15}$	$1.20_{-0.09}^{+0.08}$
	$\mathrm{gg}+\mathrm{VBF} \rightarrow 4 \ell$ (background)	$31.1_{-3.1}^{+3.0}$	2.12 ± 0.21
(a)	$\mathrm{gg}+\mathrm{VBF} \rightarrow 4 \ell$ (total, $\left.\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}=1\right)$	$29.6_{-2.9}^{+2.8}$	$1.73_{-0.17}^{+0.16}$
	$\mathrm{gg}+\mathrm{VBF} \rightarrow 4 \ell\left(\right.$ total, $\left.\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}=15\right)$	$51.8_{-5.0}^{+4.9}$	13.1 ± 1.1
$(\mathrm{~b})$	$q \bar{q} \rightarrow 4 \ell$	154.7 ± 7.4	8.6 ± 0.4
(c)	Reducible background	3.7 ± 0.6	0.44 ± 0.08
$(\mathrm{a}+\mathrm{b}+\mathrm{c})$	Total expected $\left(\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}=1\right)$	188.0 ± 7.9	10.8 ± 0.4
	Observed	183	8

$$
\begin{aligned}
& a_{2} \subset[-2.0,1.4] \\
& a_{3} \subset[-1.7,1.7]
\end{aligned}
$$

Summary

The interference effect of new physics are studied in three Higgs processes at LHC.

- The antisymmetric lineshape in $H \rightarrow \gamma \gamma$ could be extracted to probe $C P$-violating $H \gamma \gamma$ coupling.
- The forward-backward symmetry of the lepton in Z rest frame could totally reach as large as $\sim 4 \%$ for a maximal $C P$ violation in $H \gamma Z$ coupling.
- Constraints of anomalous $H Z Z$ couplings in Higgs off-shell region could be good complement for the experimental measurements in on-shell region.

Thanks!

