Radioactive Background and Muon Flux at Oneton Prototype

Jinjing Li

(for Jinping Neutrino Experiment Research Group)

MAIL: lijj16@mails.tsinghua.edu.cn

Department of Engineering Physics, Tsinghua University

2018-06-20

Outline

- Jinping Underground Lab
- 1-ton Prototype Experiment
 - Introduction
 - Motivation
 - Event Selection of Bi-214
 - Radon leakage study
 - Radioactive Background Level Estimation
 - Muon Flux
- Conclusion

Location of Jinping Underground Laboratory

Southwestern region of China (Sichuan Province) Direct flight from Beijing to Xichang + 2 hour drive

Low muon flux and reactor neutrino background

12/06/2018

1-ton Prototype Detector

1 ton liquid scintillator Transparent acrylic vessel Water 30 8" PMTs Black non-reflective shielding Lead shielding Coverage: 12% FADC 10 bit 1GS/s

Since May 10, 2017, Started with pure water. Now taking data with a type of liquid scintillator (LAB+0.07g/L PPO+13mg/L bis-MSB) from July 31, 2017.

Motivation

 The precise detection of different species of solar neutrinos demands low level of the low energy bkg.

Requirement	(Borexino)
-------------	------------

Components	²³⁸ U (g/g)	232 Th (g/g)
Stainless steel tank wall	$1 \cdot 10^{-8}$	$1 \cdot 10^{-8}$
Water buffer	$1 \cdot 10^{-10}$	$1 \cdot 10^{-10}$
Water CTF shield	$1 \cdot 10^{-13}$	$2 \cdot 10^{-13}$
Stainless Steel Sphere	$2 \cdot 10^{-10}$	$1 \cdot 10^{-10}$
PMTs	$3 \cdot 10^{-8}$	1.10^{-8}
PC buffer	$1 \cdot 10^{-15}$	$1 \cdot 10^{-15}$
Nylon film for inner vessel	$5 \cdot 10^{-12}$	$2 \cdot 10^{-11}$
Scintillator	1.10^{-16}	1.10^{-16}
N ₂ for scintillator sparging		

Astroparticle Physics 18 (2002) 1–25

Bi-214 Signal Signature

University

Event Selection

- Dataset: First month
- Prompt signal $-\beta$
- Delayed signal $-\alpha$ (visible energy $\sim 1 \text{ MeV}$)

Coincidence time vs delayed energy

×10³

2.5

1.5

0.5

cut

×10⁻³

Time [s]

3.5

2.5

1.5

0.5

Signal and Accidental Background

Distance between prompt and delayed signal
Dataset: First month

Jingyi Yu, Zhe Wang, and Shaomin Chen. arxiV:1301.5085[physics.ins-det]

Signal and Accidental Background

- Dataset: First month
- Prompt energy versus Delayed energy

Half-Life of Po-214

- Time difference between prompt and delayed signals
- Function to fit: $f(x) = A0 + A1 \exp(-x/\tau)$
- Dataset: First month

Bi-214 Decay Chain Signal

Dataset: about two months after liquid scintillator deploying
Unbinned likelihood fit:

$$-\ln L(\nu_{s}) = (\nu_{s} + \nu_{b}) - \sum_{i=1}^{N} \ln \left(\frac{\nu_{s}}{\tau} \exp(-t_{i}/\tau) + \nu_{b} \times 250\right)$$

⁵⁰⁰
^{2.3}
^{2.3}
⁵⁰⁰
⁵⁰

The Source of Bi-214

Observed Bi-214 is consistent with that from Rn-222 decay

Radon Leakage Study

- Observed uniform vertex distribution in First month is dominant by original radon background in liquid scintillator
- Vertex distribution concentrated in top part of detector in later data is consistent with expected leakage from the hole in the top

Radon Leakage Study

- Dataset: two months after liquid scintillator deploying
- Selection efficiency is not considered in fig
- Observed contamination level rising is consistent with the expected leakage of Radon
- While the contamination level in the bottom is relatively stable

Radioactive Background Level Estimation

- Based on data two months after liquid scintillator deploying
- Live time : t $\approx 1.44 \times 10^7$ s
- Selection efficiency : $\eta \approx 12.5\%$

$$R_{\text{Bi-214}} = \frac{\nu_{\text{sig}}}{m \times t \times \eta}$$
$$\approx (2.5 \pm 0.1) \times 10^{-9} \text{ Bq/g}$$

Assuming secular equilibrium is valid

$$R_{\text{U-238}} = (2.5 \pm 0.1) \times 10^{-9} \text{ Bq/g}$$

 $\approx (2.0 \pm 0.1) \times 10^{-13} \text{ g/g}$

Restrict the Bi-214 in bottom of detector by $Z \leq 0$:

$$R_{\text{U-238}} = (7.9 \pm 1.2) \times 10^{-10} \text{ Bq/g}$$

 $\approx (6.4 \pm 1.0) \times 10^{-14} \text{ g/g}$

g/g

Radioactive Background Level Estimation

- Radioactive level of Bi-214 can be decreased by a factor of 180/4279.7≈0.042
- That is 8.4×10^{-15} g/g (assuming current bkg. level)
- Purification efficiency can be measured

Estimation of Upper Limit of Bi-212(Th-232) Radioactive Level

- Th-232 decay chain $Bi-212 \rightarrow Po-212(T_{1/2} = 300ns) \rightarrow Pb-208$
- Live time : t $\approx 1.3 \times 10^7$ s
- Selection efficiency : $\eta \approx (1.51 \pm 0.04)\%$
- Upper limit (90%C.L.) of number of Bi-212 : 8.6

Upper limit of Bi-212: $R_{\rm Bi-212} \approx 4.54 \times 10^{-11} \ {\rm Bq/g}$

Assuming secular equilibrium is valid:

Upper limit of Th-232: $R_{\text{Th-232}} \approx 4.54 \times 10^{-11} \text{ Bq/g}$ $\approx 1.12 \times 10^{-14} \text{ g/g}$

Muon Spectrum Simulation

- Simulate muon penetrating in the mountain rock by Geant4.
- The muon generator in the atmosphere depends on the modified Gaisser formula.

Detection Efficiency Simulation

University

- Generate muons on the 5 surfaces of the box (side length = 3m) covering the detector.
- The muon energy and angular distribution is given by the simulation result on the previous page.
- The detection efficiency is defined as the ratio of triggered events to the total events

Muon Flux

The muon flux is calculated by

$$f = R_{\rm trig} \cdot \frac{N_{\rm top}}{\epsilon S_{\rm top} N_{\rm total}}$$

- where Rtrig is muon rate from the data, other values are efficiency factors from simulation.
- Live time: 1.832×10^7 s = 212 days
- 99 muon candidates.
- The preliminary muon flux is at 10⁻¹⁰ cm⁻²s⁻¹ level

Energy deposit of muon event candidates

Conclusion

- The half-lifes of Po-214 we measured agree well with expected values and confirmed Rn-222 related.
- The leakage of Radon is investigated by the cascade decay of Bi-214.
- Muon simulation is performed in Jinping. Muon flux : 10⁻¹⁰ cm⁻²s⁻¹ level.
- Estimation of radioactive level of U-238 gives a value $\sim 6.4 \times 10^{-14}$ g/g. And the upper limit of Th-232 contamination is estimated at 10^{-14} g/g level.
- Limit of detection for U-238: 10^{-15} g/g a low background facility.

Purification efficiency can be measured and equipment upgrade (purification, air tight) in plan.

Thank You

Department of Engineering Physics, Tsinghua University

Backup

Radon in LS study

Monte Carlo dataset

Prompt signal

Delayed signal

Department of Engineering Physics, Tsinghua University

Monte Carlo Simulation of Bi-214 Signal

Monte Carlo Simulation of Bi-214 Signal

Alpha Particle

$$\begin{array}{||c||} \hline \textbf{Exact Formula of Number of Bi-214} \\ \hline \textbf{dominant} \\ \hline \textbf{N}_{Bi-214} = N_{Rn-222}(0) \times \lambda_{Rn-222} \lambda_{Po-218} \lambda_{Pb-214} \times \{ \\ \hline \textbf{exp}(-\lambda_{Rn-222}t) / [(\lambda_{Po-218} - \lambda_{Rn-222})(\lambda_{Pb-214} - \lambda_{Rn-222})(\lambda_{Bi-214} - \lambda_{Rn-222})] \\ + exp(-\lambda_{Po-218}t) / [(\lambda_{Rn-222} - \lambda_{Po-218})(\lambda_{Pb-214} - \lambda_{Po-218})(\lambda_{Bi-214} - \lambda_{Po-218})] \\ + exp(-\lambda_{Pb-214}t) / [(\lambda_{Rn-222} - \lambda_{Pb-214})(\lambda_{Po-218} - \lambda_{Pb-214})(\lambda_{Bi-214} - \lambda_{Pb-214})] \\ - exp(-\lambda_{Bi-214}t) \times (1/[(\lambda_{Po-218} - \lambda_{Rn-222})(\lambda_{Pb-214} - \lambda_{Rn-222})(\lambda_{Bi-214} - \lambda_{Rn-222})] \\ + 1/[(\lambda_{Rn-222} - \lambda_{Po-218})(\lambda_{Pb-214} - \lambda_{Pb-214})] \\ + 1/[(\lambda_{Rn-222} - \lambda_{Pb-214})(\lambda_{Po-218} - \lambda_{Pb-214})(\lambda_{Bi-214} - \lambda_{Pb-214})]) \} \end{array}$$

Does the (short-life) intermediate nuclides matter

• Po-218, Pb-214 are(red) and aren't (blue) considered

Can the single expo be good enough to describe Rn-222 decay

University

How to give the upper limit of Bi-212

Detector simulation

Generate Ntotal muons on the 5 surfaces of the box, Ntop of them are on the top surface. The relationship between flux and muon rate is

$$R_{\mu} = f \cdot \frac{N_{\text{total}}}{N_{\text{top}}} \cdot S_{\text{top}}$$

Where f is the muon flux, Stop is the area of top surface.

The trigger rate is proportional to the muon rate,

$$R_{\rm trig} = \epsilon \cdot R_{\mu} = \epsilon \cdot f \cdot \frac{N_{\rm total}}{N_{\rm top}} \cdot S_{\rm top}$$

epsilon is the defined as the detection efficiency, which can be estimated by the ratio of triggered events and total events,

Therefore the measured flux is

$$\epsilon \equiv \frac{R_{\rm trig}}{R_{\mu}} = \frac{N_{\rm trig}}{N_{\rm total}}$$

Rtrig is obtained from the data, other values are form MC.

$$f = R_{\text{trig}} \cdot \frac{N_{\text{top}}}{\epsilon S_{\text{top}} N_{\text{total}}} = R_{\text{trig}} \cdot \frac{N_{\text{top}}}{S_{\text{top}} N_{\text{trig}}}$$