ω and $k_{\rm s}$ Meson Productions in Pb+Pb Collisions and Global Extraction of \hat{q} with Six Types of Identified Hadrons Suppression at the NLO

Wei Dai

In Collaboration with G. Y. Ma, B. W. Zhang and E. Wang

June 22, 2018

イロト 不同下 イヨト イヨト

Overview

Motivation

 $\eta,\,\phi$ and ρ^0 Meson Productions

 ω and K_s Meson Productions at larger momentum NLO DGLAP evolved Fragmentation Functions ω and K_s Productions in p+p Collisions at NLO Formalism in A+A Collisions Flavor Dependent Production Fraction of ω Productions in p+p and A+A Collisions at NLO Particle Ratio in p+p and A+A Collisions

Extraction of \hat{q} with Six Types of Identified Hadrons Suppression Nuclear Modification Factor in A+A Collisions χ^2 Fit to Extract \hat{q}

Summary and Outlook

Motivation

 $\begin{array}{l} R_{\text{AA}} \text{ measurement}(\text{larger } p_{\mathcal{T}}): \text{ E-LOSS model controlled by } \hat{q}_{0} \\ \pi^{0}(Au + Au \ 200 \text{ GeV}) & \pi^{0}(Pb + Pb \ 2.76 \text{ TeV}) \end{array}$

Motivation

 $\begin{array}{l} \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_S \ \text{Meson Productions} \\ \text{Extraction of} \ \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ \text{Summary and Outlook} \end{array}$

Motivation

To explore the nature of hadron R_{AA} at large p_T

"all these observations are in agreement with a scenario where the parent parton first loses energy in the produced dense medium and then fragments into a leading meson in the vacuum according to the same probabilities that govern high- p_T hadroproduction in more elementary systems (p+p, e^+e^-)."

S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 96, 202301 (2006) ロ ト 《 同 ト 《 言 ト 《 言 ト 言 ト 言 ク へ (4/29

Motivation

To explore the nature of hadron $R_{\rm AA}$ at large p_T

- Are similar R_{AA} trend shared among different species of final state hadrons? What is the nature?
- ► Can the scenario of E-lost parton jet fragment outside the QGP medium tell a full story of R_{AA} ? independent of MASS or SPECIES.
- Is the changing of jet chemistry playing a part in it? HOW?
- Hadron production ratio is therefore needed as a second pair of eyes to disclose the jet chemistry changing along the theoretical study.

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ & \omega \ \text{and} \ K_s \ \text{Meson Productions} \\ \text{Extraction of } \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ & \text{Summary and Outlook} \end{array}$

$\eta/\pi^{\rm 0}$ ratio in A+A Collisions

Findings:

 $\begin{array}{l} \mbox{Confronted with A. Morreale [ALICE Collaboration]} \\ \mbox{arXiv:} 1512.05250 \end{array}$

- Simple story that parton jets loss their energies first in the QCD medium and then fragment into hadrons in the vacuum can not explain everything.
- Similar trend could be seen at the RHIC and LHC that with the in- creasing of p_T, the η/π⁰ ratio in A + A collisions comes closer to the p + p curve, and at very larger p_T two curves coincide with each other.
- We emphasize that the identified hadron yield in heavy-ion collisions relies on three factors: the initial hard jet spectrum, the energy loss mechanism, and parton fragmentation functions to the hadron in vacuum.

W. Dai, X. F. Chen, B. W. Zhang and E. Wang, PLB(2015)

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_{\text{s}} \ \text{Meson Productions} \\ \text{Extraction of } \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ \text{Summary and Outlook} \end{array}$

ρ^0/π^0 ratio in A+A Collisions

W. Dai, B. W. Zhang and E. Wang,

arXiv:1701.04147

Findings:

Nature of same suppression of some light quark hadron productions is due to the light quark dominated production, such as π⁰, η and ρ⁰, thus gives similar behavior of ρ⁰/π⁰, η/π⁰ at very high p_T in A+A collisions from the ones in p+p at both the RHIC and the LHC energies.

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_{\text{S}} \ \text{Meson Productions} \\ \text{Extraction of } \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ \text{Summary and Outlook} \end{array}$

ϕ/π^0 ratio in A+A Collisions

Findings:

The \u03c6 meson (ssbar) production is however non quark dominated, hint a non-light meson will have nonnegligible gluon contribution. W. Dai, B. W. Zhang H. Z. Zhang, X. F. Chen

and E. Wang, EPJC (2017)

NLO DGLAP evolved Fragmentation Functions ω and K_s Productions in p+p Collisions at NLO Formalism in A+A Collisions Flavor Dependent Production Fraction of ω Productions in p+p an Particle Ratio in p+p and A+A Collisions

Initial Fragmentation Functions at initial Scale $Q^2=1.5 \ GeV^2$

Quark fragmentation functions into members of meson octet in terms of the SU(3) functions, α , β , γ and λ . — H. Saveetha, D. Indumathi and S. Mitra, Int. J. Mod. Phys. A **29**, no. 07, 1450049 (2014)

fragmenting		к*+	fragmenting		K* ⁰]											
quark		N	quark		K												
и	:	$\alpha + \beta + \frac{3}{4}\gamma$	и	:	$2\beta + \gamma$]											
d	:	$2\beta + \gamma$	d	:	$\alpha + \beta + \frac{3}{4}\gamma$												
5	:	2γ	5	:	2γ												
fragmenting		ω/ϕ	fragmenting		0 ⁰												
quark			quark		٣												
и	:	$\frac{1}{6}\alpha + \frac{9}{6}\beta + \frac{9}{8}\gamma$	и	:	$\frac{1}{2}\alpha + \frac{1}{2}\beta + \frac{11}{8}\gamma$	1											
d	:	$\frac{1}{6}\alpha + \frac{9}{6}\beta + \frac{9}{8}\gamma$	d	:	$\frac{1}{2}\alpha + \frac{1}{2}\beta + \frac{11}{8}\gamma$												
5	:	$\frac{4}{6}\alpha + \frac{9}{6}\gamma$	5	:	$\tilde{2\beta} + \gamma$												
fragmenting			fragmenting			1											
quark		Ρ	quark		β												
и	:	$\alpha + \beta + \frac{3}{4}\gamma$	и	:	2γ	1											
d	:	2γ	d	:	$\alpha + \beta + \frac{3}{4}\gamma$												
5	:	$2\beta + \gamma$	5	:	$2\beta + \gamma$												
fragmenting		<u> </u>	fragmenting		K*-												
quark		N	quark														
u	:	$2\beta + \gamma$	u	:	2γ]											
d	:	2γ	d	:	$2\beta + \gamma$												
s	:	$\alpha + \beta + \frac{3}{4}\gamma$	s	:	$\alpha + \beta + \frac{3}{4}\gamma $,	1	< ≣ >	- (三)	* 注 * *	* ヨ * *	<<	₹≣ > < 1	◆ 差 ▶ < 3	* 王 * * *	* 王 * * *

NLO DGLAP evolved Fragmentation Functions ω and K_s Productions in p+p Collisions at NLO Formalism in A+A Collisions Flavor Dependent Production Fraction of ω Productions in p+p ar Particle Ratio in p+p and A+A Collisions

ω FFs evolution at NLO

DGLAP evolution is considered to have the initial FFs evolving with the scale Q^2 at NLO

NLO DGLAP evolved Fragmentation Functions ω and K_s Productions in p+p Collisions at NLO Formalism in A+A Collisions Flavor Dependent Production Fraction of ω Productions in p+p and Particle Ratio in p+p and A+A Collisions

K_s FFs evolution at NLO

S. Albino, B. A. Kniehl and G. Kramer, Nucl. Phys. B 803, 42 (2008) AKK08

 η, ϕ and ρ^0 Meson Productions in A+A collisions ω and K_s Meson Productions Extraction of \hat{q} with Six Types of Identified Hadrons Suppression Summary and Outlook

 ω and K_s Productions in p+p Collisions at NLO

Formalism in p+p Collisions

$$\begin{aligned} \frac{d\sigma_{pp}^{h}}{dyd^{2}p_{T}} &= \sum_{abcd} \int dx_{a} dx_{b} f_{a/p}(x_{a}, \mu^{2}) f_{b/p}(x_{b}, \mu^{2}) \\ &\times \frac{d\hat{\sigma}}{d\hat{t}}(ab \to cd) \frac{D_{h/c}^{0}(z_{c}, \mu^{2})}{\pi z_{c}} + \mathcal{O}(\alpha_{s}^{3}), (1) \end{aligned}$$

G, Y, Ma, W. Dai, B. W. Zhang and E. Wang

K_s μ=1.0p_ @ RHIC STAR (200GeV) K_s μ=1.0p₊ @ LHC 10 ALICE (2760GeV) Ed³α/d³p (mb GeV⁻²c³) 10 10-3 p+p -> K +X 10-4 10 10⁻⁶ 10-7 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 0 20 10 12 14 16 18 p_ (GeV/c) G, Y, Ma, W. Dai, B. W. Zhang and E. Wang

(2018)

(2018)4 A > 12 N -∢ ≣ → 12/29

NLO DGLAP evolved Fragmentation Functions ω and K_s Productions in p+p Collisions at NLO **Formalism in A+A Collisions** Flavor Dependent Production Fraction of ω Productions in p+p a Particle Astic in p+p and A+A Collisions

Formalism in A+A Collisions

X. F. Chen, T. Hirano, E. Wang, X. N. Wang and H. Zhang, Phys. Rev. C 84, 034902 (2011) Huichao Song, Ulrich W. Heinz, Phys.Rev. C77 (2008) 064901 Cross section of the single hadron in HIC collisions could be expressed as:

$$\begin{split} \frac{1}{N_{\rm bin}^{AB}(b)} \frac{d\sigma_{AB}^{h}}{dyd^{2}p_{T}} &= \sum_{abcd} \int dx_{a} dx_{b} f_{a/A}(x_{a}, \mu^{2}) f_{b/B}(x_{b}, \mu^{2}) \\ &\times \frac{d\sigma}{d\hat{t}} (ab \to cd) \frac{\langle \tilde{D}_{c}^{h}(z_{h}, Q^{2}, E, b) \rangle}{\pi z_{c}} + \mathcal{O}(\alpha_{s}^{3}). \end{split}$$

The effective modifications of parton FFs in hot and dense medium:

$$\begin{split} \tilde{D}_{q}^{h}(z_{h},Q^{2}) &= D_{q}^{h}(z_{h},Q^{2}) + \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{0}^{Q^{2}} \frac{d\ell_{T}^{2}}{\ell_{T}^{2}} \\ \times \int_{z_{h}}^{1} \frac{dz}{z} \left[\Delta \gamma_{q \to qg}(z,x,x_{L},\ell_{T}^{2}) D_{q}^{h}(\frac{z_{h}}{z},Q^{2}) \right. \\ &+ \Delta \gamma_{q \to gq}(z,x,x_{L},\ell_{T}^{2}) D_{g}^{h}(\frac{z_{h}}{z},Q^{2}) \right], \quad (3)$$

Assume all the energy loss of a fast parton is that carried away by the radiative gluon in the multiple scattering processes, the corresponding parton energy loss in the QCD medium can be expressed as:

$$\frac{\Delta E}{E} = \frac{N_c \alpha_s}{\pi} \int dy^- dz d\ell_T^2 \frac{(1+z)^3}{\ell_T^4}$$

$$\times \hat{q}_{\mathbf{R}}(E, \mathbf{y}) \sin^2 [\frac{y^- \ell_T^2}{4Ex(1-z)}] \qquad (4)$$

The jet transport parameter $\hat{q}_{\mathrm{R}}(E, y)$ is related to the parton density distribution in the medium, therefore can characterizes the evolutionary medium properties.

Hirano full three-dimensional(3+1D)ideal

hydrodynamics has been replaced by Ohio State

University (2+1) viscous hydrodynamics.

Production Fraction of ω Productions in p+p and A+A Collisions

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_s \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_s \ \text{Meson Productions in A+A collisions} \\ \text{Extraction of} \ \hat{q} \ \text{with} \ \text{Six} \ \text{Types of Identified Hadrons Suppression} \\ \text{Summary and Outlook} \end{array} \right. \\ \begin{array}{c} \text{NLO DGLAP evolved Fragmentation Functions} \\ \omega \ \text{and} \ K_s \ \text{Productions in p+p Collisions at NLO} \\ \text{Formalism in A+A Collisions} \\ \text{Flavor Dependent Production Fraction of } \omega \ \text{Productions in p+p an} \\ \text{Particle Ratio in p+p and A+A Collisions} \end{array} \right.$

Production Fraction of K_s Productions in p+p and A+A Collisions

^{15 / 29}

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in } A+A \ \text{collisions} \\ \omega \ \text{and} \ K_s \ \text{Meson Productions in } A+A \ \text{collisions} \\ \omega \ \text{and} \ K_s \ \text{Productions in } p+p \ \text{collisions} \\ \text{Formalism in } A+A \ \text{collisions} \\ \text{Favor Dependent Production Fraction } \phi \ \text{Productions in } p+p \ \text{and} \ \omega \ \text{and} \ K_s \ \text{Productions in } p+p \ \text{and} \ \omega \ \text{and} \ K_s \ \text{Motivation} \\ \text{Motivation} \ \text{Formalism in } A+A \ \text{collisions} \\ \text{Formalism in } A+A \ \text{collisions} \ \text{Collisions} \ \text{Formalism in } p+p \ \text{and} \ \omega \ \text{and} \ K_s \ \text{and} \ K_s \ \text{and} \ \omega \ \text{and} \ K_s \ \text{and} \ K_s \ \text{and} \ \omega \ \text{and} \ K_s \ \text{and} \ \text{and} \ K_s \ \text{and} \ \text{and} \ K_s \ \text{and} \ K_s \ \text{and} \ \text{and} \ K_s \ \text{and} \ K_s \ \text{and} \ \text{and} \ K_s \ \text{and} \ \text{and} \ \text{and} \ \text{and} \ K_s \ \text{and} \ \text{an$

ω/π^0 ratio in P+P and A+A Collisions

RHIC

LHC

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_s \ \text{Meson Productions in A+A collisions} \\ \omega \ \text{and} \ K_s \ \text{Meson Productions in A+A collisions} \\ \text{Extraction of} \ \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ \text{Summary and Outlook} \end{array} \right. \\ \begin{array}{c} \text{NLO DGLAP evolved Fragmentation Functions} \\ \omega \ \text{and} \ K_s \ \text{Productions in p+p Collisions at NLO} \\ \text{Formalism in A+A Collisions} \\ \text{Flavor Dependent Production Fraction of } \omega \ \text{Porductions in p+p an} \\ \text{Particle Ratio in p+p and A+A Collisions} \end{array} \right.$

K_s/π^0 ratio in P+P and A+A Collisions

RHIC

LHC

 $\begin{array}{c} & \text{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson} \ \text{Productions} \ \text{in A+A collisions} \\ & \omega \ \text{and} \ K_s \ \text{Meson} \ \text{Productions} \\ \hline \text{Extraction of } \hat{\textbf{q}} \ \text{with Six Types of Identified Hadrons Suppression} \\ & \text{Summary and Outlook} \end{array}$

Nuclear Modification Factor in A+A Collisions χ^2 Fit to Extract \hat{q}

Nuclear Modification Factor in Au+Au Collisions

Nuclear Modification Factor in A+A Collisions χ^2 Fit to Extract \hat{q}

Nuclear Modification Factor in Pb+Pb Collisions

 η, ϕ and ρ^0 Meson Productions in A+A collisions ω and K_s Meson Productions Extraction of \hat{q} with Six Types of Identified Hadrons Suppression Summary and Outlook

Nuclear Modification Factor in A+A Collisions χ^2 Fit to Extract \hat{q}

χ^2 Fit to Extract \hat{q}

RHIC

$$\chi^{2}(a_{j}) = \sum_{i} \frac{[D_{i} - T_{i}(a_{j})]^{2}}{\sigma_{i}^{2}}$$
(5)
$$\sigma_{i}^{2} = e_{y}^{2} + [\frac{1}{2}(e_{x})f'(x)]^{2}$$
(6)

In the above equations, D_j represents the experimental grids and T_i is our theoretical prediction. σ_i^2 means the systematic and statistical experimental errors.

 $\begin{array}{l} & \mbox{Motivation} & \mbox{Motivation} & \mbox{Motivation} & \mbox{n+A} \mbox{collisions} & \\ & \mbox{ω and \mathcal{K}_{3} Meson Productions} & \\ & \mbox{Extraction of \hat{q} with Six Types of Identified Hadrons Suppression} & \\ & \mbox{Summary and Outlook} & \\ \end{array}$

Nuclear Modification Factor in A+A Collisions χ^2 Fit to Extract \hat{q}

 χ^2 Fit to Extract \hat{q} at the RHIC and at the LHC

Summary

With the same higher-twist approach to take into account the jet quenching effect by medium modified FFs, the nuclear modification factors and particle ratio has been calculated for ω meson and K_{short}^0 meson at the RHIC as it is the first theoretical calculation has been presented.

We re-extract the \hat{q} by fitting the theoretical results of all 6 identified mesons' $R_{\rm AA}$ at hand with the available experimental data both in the RHIC and the LHC. Therefore the constraint to the \hat{q} by different final state hadrons has been performed.

Thank you!

BAK UP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{l} & \operatorname{Motivation} \\ \eta, \ \phi \ \text{and} \ \rho^0 \ \text{Meson Productions in } A+A \ \text{collisions} \\ \omega \ \text{and} \ \mathcal{K}_{\mathrm{S}} \ \text{Meson Productions} \\ \text{Extraction of } \hat{q} \ \text{with Six Types of Identified Hadrons Suppression} \\ \end{array}$

η and $\pi^{\rm 0}~{\rm FFs}$

- At very high p_T region, $D_{q \to \eta}/D_{q \to \pi^0}$ at $z_h = 0.7$ is approximately 0.5. (why same as η/π^0 rario?)
- At high p_T , quark FFs $D_{q \to \eta, \pi^0}(z_h, Q = p_T)$ have a weak dependence on z_h and p_T in the typical z_h region 0.4 – 0.7 for identified hadron production

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

Re-write the The Hadron Yield

The hadron yield in p + p will be determined by two factors: the initial (parton-)jet spectrum f_{q,g}(p_T) and the parton fragmentation functions D_{q,g→η,π⁰}(z_h, p_T).

$$\frac{1}{p_T} \frac{d\sigma_{\pi^0,\eta}}{dp_T} = \int f_q(\frac{p_T}{z_h}) \cdot D_{q \to \eta,\pi^0}(z_h, p_T) \frac{dz_h}{z_h^2} + \int f_g(\frac{p_T}{z_h}) \cdot D_{g \to \eta,\pi^0}(z_h, p_T) \frac{dz_h}{z_h^2} .$$
 (7)

Energy loss effect will shift z_h of quark FFs in vacuum.

η/π^0 ratio only considering gluon and quark in p+p

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

In the asymptotic region with $p_T \rightarrow \infty$:

$$R(\eta/\pi^{0}) = \frac{d\sigma_{\eta}}{dp_{T}} / \frac{d\sigma_{\pi^{0}}}{dp_{T}}$$

$$\approx \frac{\int f_{q}(\frac{P_{T}}{z_{h}}) \cdot D_{q \to \eta}(z_{h}, p_{T}) \frac{dz_{h}}{z_{h}^{2}}}{\int f_{q}(\frac{P_{T}}{z_{h}}) \cdot D_{q \to \pi^{0}}(z_{h}, p_{T}) \frac{dz_{h}}{z_{h}^{2}}}$$

$$\approx \frac{\Sigma_{q} D_{q \to \eta}(\langle z_{h} \rangle, p_{T})}{\Sigma_{q} D_{q \to \pi^{0}}(\langle \langle z_{h} \rangle, p_{T})} . \quad (8)$$

- The yields of both π⁰ and η should also predominantly come from quarks.
- At very high p_T region, the ratios of η/π⁰ in both A + A and p + p should overlap with the one in e⁺e⁻ scattering, and reach a universal value ~ 0.5.

୍ରି ବ୍ 🖓 27 / 29

η/π^0 ratio only considering gluon and quark in p+p

 For the transverse momentum p_T is not very high.

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

η/π^0 ratio only considering gluon and quark in A+A

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

- A naive expectation is that because gluon may give larger η/π⁰ ratio than quark does, the larger suppression of gluons in the QCD medium will reduce η/π⁰, against calculation.
- The suppression of gluon in QCD medium imposes a larger reduction of the yield of π⁰ than that of η.
- We emphasize that the identified hadron yield in heavy-ion collisions relies on three factors: the initial hard jet spectrum, the energy loss mechanism, and parton fragmentation functions to the hadron in vacuum.

୬ < ୯ 29 / 29