

大亚湾反应堆中微子实验 nGd振荡分析的最新结果

吴文杰

中国科学院高能物理研究所

2018/6/20

中国物理学会高能物理分会第十届全国会员代表大会暨学术年会·上海

- 大亚湾反应堆中微子实验简介
 - 实验设计
 - 探测器和探测原理
- 近期的实验进展
 - 精度更高的能量响应模型
 - 精度更高的Li9/He8本底和乏燃料估计
 - 精度更高的中子探测效率
- 中微子事例挑选
 - 挑选条件
 - 实验本底及其系统误差
- 振荡分析结果
- 总结与展望

4 x 20 tons target mass at far site

Far site (EH3) 1540 m from Ling Ao 1 1910 m from Daya Bay 860 m.w.e overburden

大亚湾实验设计示意图

Ling Ao Near site (EH2) 470 m from Ling Ao 1 265 m.w.e overburden

465 m

Constru

tunnel

Ling Ao-ll NPP 2x2.9 GW

Water hall

m 006

uid Scintillator hall

entrance

295 m

Daya Bay Near site (EH1) 363 m from Daya Bay 250 m.w.e overburden

NPP, 2x2.9 GW

Total Tunnel length ~ 3000 m

Daya Bay

NPP, 2x2.9 GW

探测中微子事例

- 三层圆柱探测器
 - 掺钆液闪: 靶物质
 - 液闪: 集能区
 - 矿物油: 屏蔽层
- 大亚湾实验的靶物质为掺钆 液闪,利用IBD反应产生的正 电子和中子探测中微子信号
- 正电子和中子事例在时间上
 形成关联信号,做时间符合
 可以排除大部分本底;
- 俘获中子的钆退激发释放的 总能量约为8 MeV,大于天
 然放射性衰变的能量,做能 量符合可以有效地排除本底

- 预期探测到的快信号能谱时,需要利用 探测器的能量响应模型对中微子能谱进 行转换
- 探测器的能量响应是非线性的,来源于
 - 液闪的淬灭效应和切伦科夫效应
 - 电子学的非线性
- 2015年底, EH1-AD1开始同时使用常规
 的电子学和FADC取数, 测量了常规电
 子学的非线性
- 2017年初,使用不同包装材料的⁶⁰Co放 射源对探测器进行刻度,测量了包装材 料对刻度源的屏蔽效应

2018/6/20

精度更高的能量响应模型

Scintillator nonlinearity

1.05

0.95

0.9

0.98

Ō

Data / best fit

n-12C

²⁰⁸TI

2

¹⁶O'

Best fit model

6

Single gamma source Multiple gamma source

n-⁵⁶Fe

- 利用不同能量的γ峰和¹²B发生β衰变的
 连续能谱对能量模型的参数进行约束
 - 利用²¹²Bi和²¹⁴Bi的β+γ对能量模型进 行检验
 - 新的能量模型降低了50%的误差
- 精度更高的能量模型可以对绝对中微
 子能谱做更精确的测量

- 宇宙线与碳核反应产生的Li9/He8是第二大本底来源,它们可 以发生β-n级联衰变,难以和中微子信号区分开来
- 利用更大统计量的数据,可以对Li9/He8的能谱和事例率做精度更高的测量,近点探测器的该项本底误差从50%降低到30%

100%降低到30%

2018/6/20

探测效率的误差很大一部分来自于中子探测效率的误差,利用新的中子刻度数据可以对中子探测效率ε_n进行约束

	Source	ϵ	$\delta\epsilon/\epsilon$				
	Target protons	-	0.92%				
	Flasher cut	99.98%	0.01%				
	Capture time cut	98.70%	0.12%				
	Prompt energy cut	99.81%	0.10%				
εn	Gd capture fraction	84.17%	0.95%				
相对误差	nGd detection efficiency	92.7%	0.97%				
	Spill-in correction	104.9%	1.00%				
JJ1.09%	Combined	80.6%	1.93%				

探测效率

- $\frac{241}{\text{Am}-9} = \frac{241}{\text{Am}-9} = \frac{241}{\text{Am}-13} = \frac{241}{\text{Am}-13} = \frac{214}{\text{Am}-13} = \frac$
- 比较数据与模拟结果,从而评估中子探测效率的误差,利用1230天的数据,得到新的中子探测效率为

 $\mathcal{E}_n = (81.48 \pm 0.60)\%$ 相对误差为0.74%

中微子事例挑选

- 本次分析数据基于从2011-12-24到2017-8-30所取的1958天数据
- 挑选条件
 - 去除flasher等坏事例
 - 做宇宙线缪子的反符合
 - 要求快慢信号时间间隔为(1,200)μs, 且前后没有触发信号
 - 要求快信号能量为(0.7, 12) MeV
 - 要求慢信号能量为(6,12) MeV
- 近点探测到约350万中微子信号,远点探 测到50万中微子信号,是目前世界上统计 量最大的电子型反中微子数据样本
- 与上次分析相比 (Phys. Rev. D 95, 07200), 增加了约60%的统计量

- (A) 所有信号
- (B) 去除flasher事例
- (C) 去除水池标记的缪子事例所在反符合 时间窗口的事例
- (D) 挑选符合时间和能量条件的关联事例
- (E) 去除中心探测器标记的缪子事例所在 反符合时间窗口的事例

2018/6/20

		来源	B/S @ 近点	B/S@远点	误差
非关联本底	偶然符合本底	(γ, n), (γ, γ), (n, n)偶然符合	~ 1.1%	~ 1.3%	1%
	Li9/He8本底	宇宙线与碳核反应的产物	~ 0.3%	~ 0.3%	27%~42%
关联本底	快中子本底	宇宙线与岩石碰撞产生的快中子	~ 0.1%	~ 0.06%	< 20%
	AmC本底	中子在铁上的非弹性散射和俘获	~ 0.02%	~ 0.07%	45%
	(a, n)本底	天然放射性α, ¹³ C(α, n) ¹⁶ O	~ 0.01%	~ 0.05%	50%
	ACU-B ACHA	ACUC ACUB ACUA ACUC μ Image: Acua μ image: Acua μ Image: Acua μ μ Image: Acua	ACU-B ACU-A	ACU-C	ACU-B ACU-A
偶然符合本底	Li9/He87	本底 快中子本底	AmC本	克	(a, n)才
2018/6/20	2018/6/20 大亚湾反应堆中微子实验nGd振荡分析的最新结果				

1958天的数据

	El	H1	EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	830036	964381	889171	784736	127107	127726	126666	113922
DAQ live time (days)	1536.621	1737.616	1741.235	1554.044	1739.611	1739.611	1739.611	1551.945
$arepsilon_{m \mu}$	0.8261	0.8221	0.8576	0.8568	0.9831	0.9831	0.9829	0.9833
$arepsilon_m$	0.9744	0.9748	0.9758	0.9757	0.9761	0.9760	0.9758	0.9758
Accidentals (day^{-1})	8.27 ± 0.08	8.12 ± 0.08	6.00 ± 0.06	5.86 ± 0.06	1.06 ± 0.01	1.00 ± 0.01	1.03 ± 0.01	0.86 ± 0.01
Fast neutron $(AD^{-1} day^{-1})$	0.79 ± 0.10		0.57 ± 0.07		0.05 ± 0.01			
${}^{9}\text{Li}/{}^{8}\text{He} (\text{AD}^{-1} \text{ day}^{-1})$	2.38 ± 0.66		1.59 ± 0.49		0.19 ± 0.08			
Am-C correlated 6-AD (day^{-1})	0.29 ± 0.13	0.27 ± 0.12	0.30 ± 0.14		0.24 ± 0.11	0.23 ± 0.10	0.23 ± 0.10	
Am-C correlated 8-AD (day^{-1})	0.15 ± 0.07	0.14 ± 0.06	0.12 ± 0.05	0.13 ± 0.06	0.04 ± 0.02	0.03 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$^{13}C(\alpha, n)^{16}O (day^{-1})$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
$\overline{\nu}_e \text{ rate } (\text{day}^{-1})$	659.36 ± 1.00	681.09 ± 0.98	601.83 ± 0.82	595.82 ± 0.85	74.75 ± 0.23	75.19 ± 0.23	74.56 ± 0.23	75.33 ± 0.24

- 中微子事例率的统计误差:~0.11% (近点),~0.29% (远点)
- 本底对中微子事例率误差的贡献:~0.1%

2018/6/20

• 事例数和能谱均显示出明显的振荡效应, 拟合结果与3代中微子模型相符

2018/6/20

• 利用1958天的实验数据,分析得到

 $\sin^{2} 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^{2}| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^{2}$ $\Delta m_{32}^{2} = (2.47 \pm 0.07) \times 10^{-3} \text{ eV}^{2} \text{ (NH)}$

• 大亚湾实验将取数到2020年

 $-\sin^2 2\theta_{13}$ 的测量精度将达到3%

- 从2017年2月份开始, EH1-AD1开始用于液闪置换实验, 不再参与中微子取数
 - 对振荡参数的测量影响很小,精度降低<0.05%
 - 液闪置换实验将用来研究液闪纯化技术,以及不同液闪配方的光学性能
- 利用FADC的数据,可以修正单通道的电子学非线性,提高绝对能谱的测量精度

谢谢!

Full oscillation probability:

$$P_{\overline{v}_e \to \overline{v}_e} = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

• Effective oscillation probability:

$$P(\overline{v}_e \to \overline{v}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{1.267 \Delta m_{ee}^2 L}{E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E} \leftarrow \frac{\text{independent of}}{\text{mass hierarchy}}$$

and solar oscillation

• For Daya Bay's L/E values, the full formula becomes:

$$P(\overline{v}_{e} \to \overline{v}_{e}) \simeq 1 - 4s_{13}^{2}c_{13}^{2} \left[\frac{1 - \cos(2\Delta_{32} \pm \phi)}{2} \right] - \text{(solar term) where: } \Delta_{x} = \Delta m_{x}^{2} \frac{L}{4E}$$
$$= 1 - \sin^{2}2\theta_{13}\sin^{2}(\Delta_{32} \pm \phi/2) - \text{(solar term)}$$

Comparing this expression with the effective one we conclude:

$$|\Delta m_{ee}^{2}| = |\Delta m_{32}^{2}| \pm \left(\phi \times \frac{4E}{L}\right)/2$$
$$= |\Delta m_{32}^{2}| \pm (5.17 \times 10^{-5}) \text{eV}^{2}$$

The fit is always done with the full oscillation probability.

大亚湾反应堆中微子实验nGd振荡分析的最新结果

Advantages:

parametes

Side-by-side能谱比较

2018/6/20

IBD Candidates vs. Real Time

能标的稳定性

spn-nGd calibration method

⁶⁰Co calibration method

