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Abstract

We performed a series of discussions about the antiproton
excess in the AMS-02 data. For the efficiency of calculation,
we adopted the Support Vector Machine (SVM) to quickly
reproduce the theoretical prediction of cosmic ray fluxes.
We ensured the uncertainties introduced by such Machines
are acceptable, and carried out the scans throughout the
favoured parameter space to exhibit in what sense the dark
matter is needed in the explanation of current data. Differ-
ent proton-proton collision hadronic models are considered,
and the effect of solar modulation is shown. More interested
cases are to be investigated.

Support Vector Machine (SVM)

We introduceed the SVM to quickly reproduce the simu-
lation result, in order to speed up the scan:

n min −→ O(0.1) s
SVM is a machine learning model used to perform clas-

sification or regression analysis.
Classification: Given a set of n-dimension data points
each belong to one of two classes, the SVM would try to
search for the maximum-margin hyperplane to split
them:

w · x + b = 0.

Figure 1: The maximum-margin hyperplane found in a classification
problem.

Nonlinear case: When the data are nonlinear, we could
apply the so-called "kernel trick", in which the dot
product xi · xj is replaced by a nonlinear kernel function
k(xi, xj). We choose the Gaussian radial basis function in
this work:

k(xi, xj) ≡ exp(−γ||xi − xj||2).
Regression: If each of the given data points xi is as-
signed with a value yi, the SVM could perform a regression
analysis which result in a target function

f (x) = k(w, x) + b,

which satisfy f (xi) ≈ yi, and is used to estimate the value
of any new point.

Training

We train the SVM with input parameters obtained in
our previous work 1701.06149, in which we performed
a scaning to search for the propagation parameters,
p injection parameters, and solar modulation pa-
rameter ϕ favoured by the B/C and p flux measurements.

104 sets of parameters was choosen, and trainings
for different input values was performed:
• χ2 in fitting of the B/C and p flux;
• Φi(E) the flux of background CR at energy E;
• Φδ

DM(Ej → Ei) the DM contribution to p̄ flux at energy
Ei resulted from a delta injection δ(E − Ej).

Combining a series of trained Φi(E) models, we then estimate the background cosmic ray fluxes.
Uncertainty: Comparing thousands of SVM estimations with the true values, the uncertainties are obtained.
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Figure 2: The SVM calculation uncertainty, in comparison with the error of AMS-02 data.

Given the necessary properties of DM, one
could then estimate the DM contribution to
p̄ flux with the integration∫

dEjΦδ
DM(Ej → Ei)

dN

dE
(Ej).

In the case that DM with a mass of 30GeV
annihilate in bb̄ channel, we take a random
test parameter point as an example,
comparing the SVM estimation with the real
simulation result. It could be seen that the
differences between the estimation and real
simulation is always smaller than 1‰.
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Figure 3: The DM contribution to antiproton from the SVM estimation
and the real simulation.

Fitting the antiproton data

Varying the propagation parameters, p injection parameters and p solar modulation parameters ϕp within the
2σ region in the previous study, we fitted the AMS-02 p̄/p data.
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Figure 4: The best-fit spectrum without the DM component.

Background CR: We investegated two
factors that may affect the prediction of CR
p̄, the choice of generator and the
assumption on solar modulation ϕ.

generator ϕp/ϕp̄ region ϕp/ϕp̄ χ2

Tan & Ng [1,1] 1 49.8
Tan & Ng [0.67,1.5] 1.27 47.7
Winkler [0.67,1.5] 1.5 37.5

DM contribution: In the three considered cases, we then added the DM component to investigate in what
sense such a extra component is needed.
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Figure 5: The 1, 2, 3 − σ favoured parameter region of the DM component.
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Conclusions

• We introduced the SVM method to quickly reproduce the simulation result of CR propagation.
• With the well trained models, we fit the AMS-02 data with different background CR fluxes, and

investegated in what sense the DM component is needed in each case.
• With the DR propagation model, the uncertainty on ϕp̄ would affect the property of required DM.
• The hadronic model from Winkler would predict more high energy antiproton than that from Tan & Ng,

and thus tends to require a low-mass DM, but both of them would corresponding to a significance less then
2σ in the current study.

• More interesting generators, more propagation models, and different choice of data are to be studied.


