Study of ZH→llbb with the ATLAS detector

Chikuma Kato^{1,2}, TDLI¹, SJTU² June 20, 2018, CCHEP@Shanghai

Introduction (1)

- H→bb is the most dominant decay of the Higgs boson in the Standard Model (SM) [1]
- In 2017, evidence (3 σ) for the H \rightarrow bb was reported by the ATLAS and CMS experiment [2,3]

Introduction (2)

- Vector boson associated production (VH) is the most sensitive channel for the H \rightarrow bb [4]
- In order to reach observation (5σ) , statistical and systematic uncertainties need to be reduced
- Study of $ZH \rightarrow IIbb$ with the ATLAS detector is presented

$ZH \rightarrow llbb$ analysis

- Event selection: 2 leptons & 2 b-jets
 - m(ll)=81–101 GeV to reduce ttbar and multi-jet
 - b-tag efficiency 70% to reduce Z+jets
- Event categorization: 2 jet, high pT(V) region is sensitive
 - $(2 \text{ jet}, 3 \le \text{ jets})^*(pT(V)=75-150, 150 \le \text{ GeV})$
 - Signal regions (SR) and top emu control regions (CR)

Background estimation

- Main backgrounds are estimated using data and Monte Carlo simulation (MC) in signal depleted regions
 - Z+bb is estimated using m(bb) sideband (left)
 - ttbar is estimated using top emu CR (right)
- Diboson and single-top are estimated using MC
- Multi-jet is estimated using data

b-jet energy correction

- Standard jet calibration: Not optimized for b-jet \rightarrow dedicated b-jet energy correction can improve the Higgs mass resolution
- Muon-in-jet correction: Add semileptonic decay muon back to jet after subtracting energy loss in the calorimeter
- PtReco correction: Apply pT dependent correction factor

Kinematic fit:

- Constrains llbb system to be balanced in the transverse plane and improve b-jet energy correction
- $\sim 40\%$ gain in the Higgs mass resolution

Multivariate analysis

- Multivariate discriminant using Boosted Decision Tree (BDT_{VH}) separates signal and background efficiently
- ~20% gain in sensitivity applying looser event selection compared to cut-based analysis

Systematic uncertainties

- Experimental uncertainties are summarized as 61 Nuisance Parameters in the statistical analysis:
 - b-tag efficiency: 2, 10, 30% for b, c, light jet
 - Jet energy scale: 4.5% for pT=20 GeV, 2% for pT=2 TeV
- Signal and background modeling uncertainties are estimated comparing MC samples, generators, scale variations, parton shower, etc.
 - Normalization of main backgrounds are floated

Source of uncertainty		σ_{μ}	
Total		0.39	
Statistical		0.24	
Systematic		0.31	
Experimental uncertainties			
Jets		0.03	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03	
Leptons		0.01	
	b-jets	0.09	
b-tagging	<i>c</i> -jets	0.04	
	light jets	0.04	
	extrapolation	0.01	
Pile-up		0.01	
Luminosity		0.04	
Theoretical and modelling uncertainties			
Signal		0.17	
Floating normalisations		0.07	
Z + jets		0.07	
W + jets		0.07	
$t\bar{t}$		0.07	
Single top quark		0.08	
Diboson		0.02	
Multijet		0.02	
MC statistical		0.13	C

Statistical analysis

- Maximum likelihood fit is performed to estimate background, test background only hypothesis, and extract signal strength (μ)
- The likelihood is described as a product of Poisson probability of each bin in the BDT_{VH} or m(bb) distributions
- Systematic uncertainties are also included as Nuisance Parameters
 (θ) and constrained by normal or log normal distributions

$$L(\mu, \boldsymbol{\theta}) = \prod_{i \in bins} P(n_i | \mu s_i(\boldsymbol{\theta}) + b_i(\boldsymbol{\theta})) \prod_{j \in \boldsymbol{\theta}} G(\theta_j)$$

- The floating normalization of main backgrounds are constrained by data in low BDT_{VH} , m(bb) sideband, and top emu CR:
 - Z+bb (2 jet): 1.28 ± 0.13
 - Z+bb (\geq 3 jet): 1.15 ± 0.10
 - ttbar (2 jet): 0.98 ± 0.11
 - tt (\geq 3 jet): 1.03 ± 0.07

Results of multivariate analysis

- Observed significance: 3.6σ
- Expected significance: 1.9σ
- Signal strength: $\mu = 1.90 \stackrel{+0.51}{_{-0.49}}$ (stat.) $\stackrel{+0.59}{_{-0.42}}$ (syst.)

Results of cut-based analysis

• Signal strength: $\mu = 2.20 \stackrel{+0.61}{_{-0.59}}$ (stat.) $\stackrel{+0.70}{_{-0.49}}$ (syst.)

Summary and future plans

- Study of $ZH \rightarrow IIbb$ with the ATLAS detector is presented
- b-jet energy correction: ~40% gain in the Higgs mass resolution
- Results of multivariate analysis
 - Observed significance: 3.6σ
 - Expected significance: 1.9σ
 - Signal strength: $\mu = 1.90 \stackrel{+0.51}{_{-0.49}}$ (stat.) $\stackrel{+0.59}{_{-0.42}}$ (syst.)
- Results of cut-based analysis
 - Signal strength: $\mu = 2.20 \stackrel{+0.61}{_{-0.59}}$ (stat.) $\stackrel{+0.70}{_{-0.49}}$ (syst.)
- Future plans
 - 130 fb⁻¹ at the end of Run2 in 2018
 - Kinematic fit using soft track information
 - Data driven background estimation

Thank you!

References

[1] LHC Higgs Cross Section Working Group, 2016, https:// cds.cern.ch/record/2227475
[2] ATLAS Collaboration, 2017, JHEP 12 (2017) 024
[3] CMS Collaboration, 2017, PLB 780 (2018) 501
[4] ATLAS and CMS Collaborations, 2016. JHEP 08 (2016) 045

Luminosity extrapolation

