

The 10th Conference of High Energy Physics, Shanghai, China (June 19th- 24th, 2018) Date: June 22nd

Search for an L_{μ} - L_{τ} gauge boson using Z \to 4 μ events in pp collisions at \sqrt{s} =13 TeV

Results are based on CMS-PAS-EXO-18-008

By:

Tahir Javaid

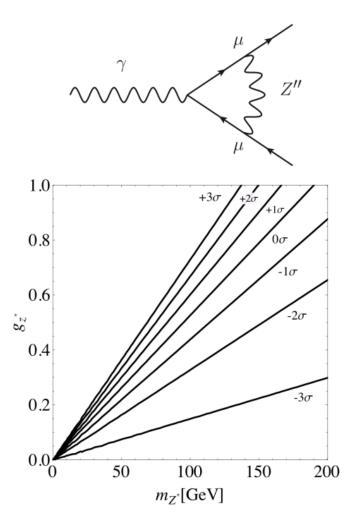
Institute of High Energy Physics (IHEP)

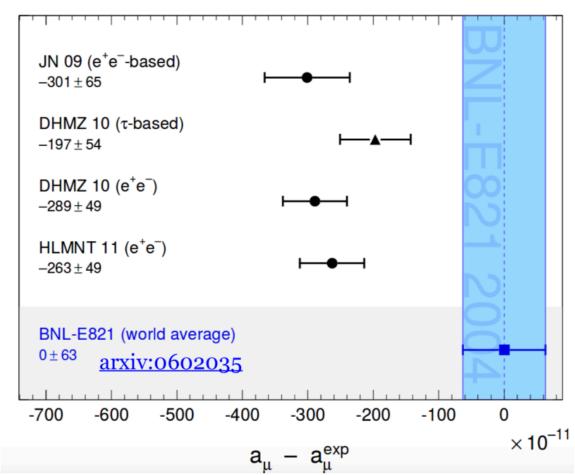
On the behalf of CMS Collaboration

Outline

- Introduction and motivation
- Analysis overview and strategy
 - Event Selection
 - Signal and background modelling
 - Systematic uncertainties
- Results
- Summary

Introduction: an L_{II}-L_T model

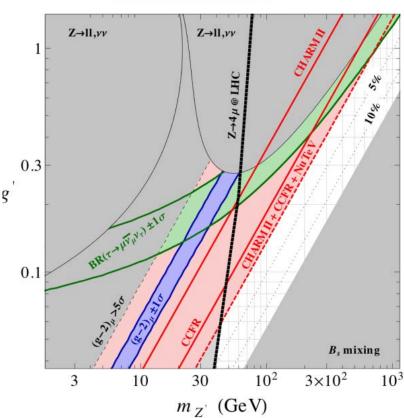

- The Standard Model is widely believed to be incomplete
 - ❖ Does not provide an explanation of many observations, e.g. dark matter, matterantimatter asymmetry, and flavor.
- An additional U(1)' gauge symmetry is one of the simplest extensions in SM
 - Only certain generation dependent couplings are allowed to keep the theory anomaly free
 - Differences in lepton family numbers are all anomaly free
 - ♣ L_u-L_T is the least constrained experimentally
 - Only couples to 2nd and 3rd leptons generation

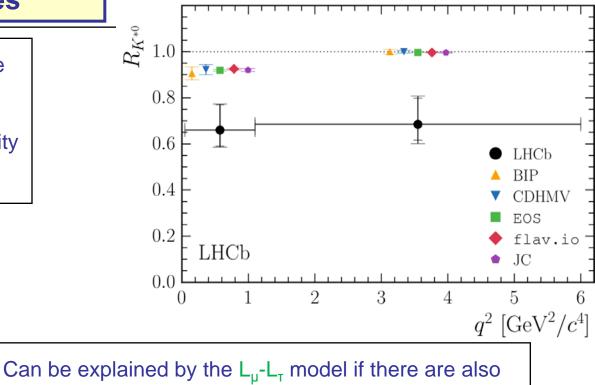

where g' are arbitrary dimensionless couplings to the SM leptons

https://arxiv.org/pdf/1609.04026.pdf

Explanation of (g-2)_u anomaly

Longstanding tension in the measured value of $(g-2)_{\mu}$ can be explained by the $L_{\mu}-L_{\tau}$ model for appropriate values of the mass and coupling





Explanation of b→**s**µµ anomalies

LHCb has measured the quantity R(K*) to be about 2.5 sigma below the SM prediction, pointing to potential Lepton Flavor Universality Violation

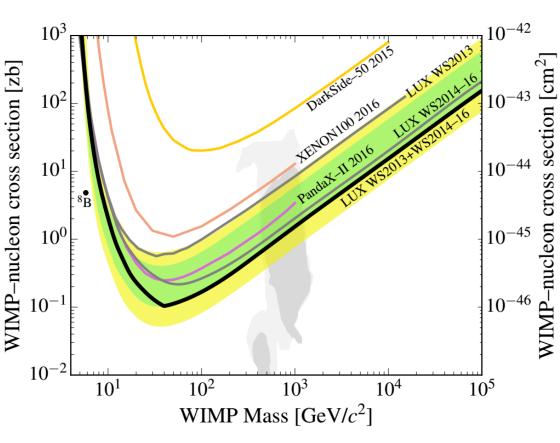
arxiv:1403.1269

arxiv:1705.05802

Can be explained by the L_{μ} - L_{τ} model if there are also interactions with quarks

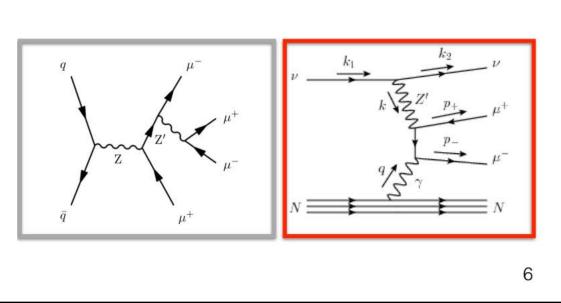
 B^0

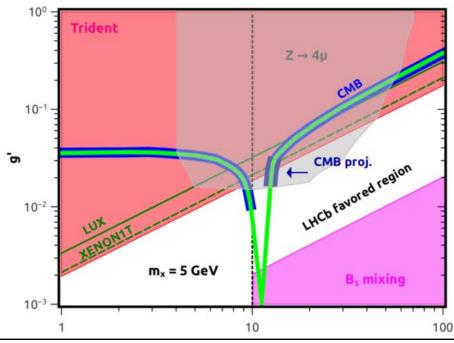
Explanation of no DM signal


The lack of DM signal at Direct Detection experiments can be alleviated if the mediator is leptophilic, as in the Lµ-LT model

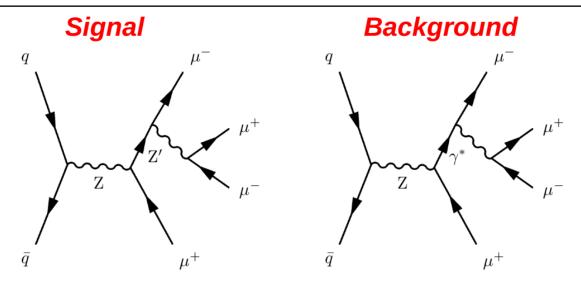
$$\sigma_{SI} = \frac{1}{A^2} \frac{\mu_N^2}{9\pi} \left(\frac{\alpha_{\rm em} Z g'^2 q_\chi q_l}{\pi m_{Z'}^2} \log \left(\frac{m_\mu^2}{m_\tau^2} \right) \right)^2$$

arxiv:1609.04026




Can be explained by the L_{μ} - L_{τ} model if there are also interactions with quarks

Constraints on L_u-L_T Model


- Strongest constraints on the L_{μ} - L_{τ} model come from the "Neutrino Trident" process and the rate of Z \rightarrow 4 μ at the LHC
 - LHC constraints come from reinterpretation of ATLAS B(Z→4μ) measurement at 7 and 8 TeV, does not make use of specific Z' kinematics
- DM relic density and b→sμμ anomaly explanation allowed for a bounded parameter space, muon (g-2)_μ
 explanation disfavored by Trident measurement

arxiv:1609.04026

Event Signature and Motivation

- The Z boson provides an extremely clean source, four muons in final state with Z' to μ+μ-
 - Almost background free
 - ❖ After requiring 4 muons there is only irreducible Z→4µ background (estimated by simulation)
 - Reduced by orders of magnitude by reconstructing the Z' candidate
 - Excellent mass resolution, higher reconstruction efficiency
- Cut-and-count search with a sliding mass window
- Statistically limited after final selection

Data, Triggers, MC Simulation

- ❖ Full 2016/2017 dataset corresponding to 77.3 fb⁻¹ of integrated luminosity
 - Luminosity uncertainty 2.6% for 2016 and 2.3% for 2017
- We use an OR of Single, Double and Triple muon triggers for muons passing the identification and isolation requirements:
 - Global or Tracker muons with ghost removal pT>5 GeV, |η|<2.4, dxy<0.5cm, dZ<1cm, SIP<4 (Loose)</p>
 - **Φ** PF muon with $\Delta\beta$ corrected PF Iso(Δ R=0.3)<0.35 (Tight)
- MC simulation samples: (for Z' and background)
 - To estimate background rate, optimize event selection, evaluate acceptance and systematic uncertainties
 - ❖ Signal (LO in pQCD): with MadGraph5 aMC@NLO
 - ❖ Background (NLO): POWHEG 2.0 and MCFM for qq and gg initiated process resp.
 - MPI simulation: PYTHIA 8.212 tune CUETP8M1
 - Detector effects: GEANT4

Object Reconstruction and Selection

Based on H→4µ analysis

- ❖Reconstruct Z candidates from OSSF muon pairs which satisfy:
 - $4.0 < m(\mu^+\mu^-(\gamma)) < 120 \text{ GeV}$
- * For each ZZ candidate, Z_1 candidate is selected with $\mu^+\mu^-(\gamma)$ closest to the PDG mass, the other as Z_2 :
 - **♦** 12 < $m(Z_1)$ < 120 GeV
 - ❖4.0 < m(Z₂) < 120 GeV</p>
 - ❖ $p_T(\mu) > 5.0 \text{ GeV}$

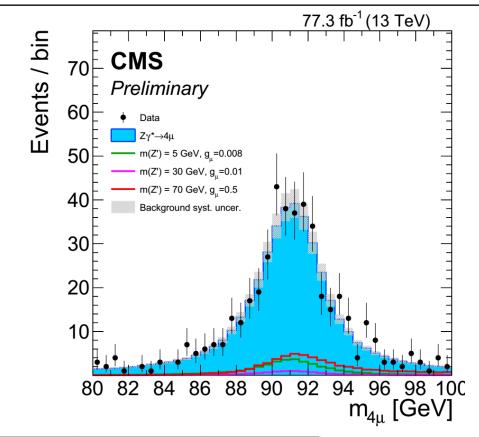
 - **♦** Leading $p_T(μ)$ > 20 GeV, Sub-leading pT(μ) > 10 GeV
 - ❖Removed overlapping muons (△R>0.02 between each muon)
 - ♦80 < m(4µ) < 100 GeV
 </p>
- ❖FSR photon recovery algorithm per lepton
 - ❖ Pre-selection of $p_T(\gamma)$ >2 GeV, $|\eta|$ <2.4, PF Iso. < 1.8
 - Electron SC veto
 - $\Delta R(\gamma, \mu)/(E_T^{\gamma})^2 > 0.012$, and $\Delta R(\gamma, \mu) > 0.5$
 - ❖FSR photons removed from muon isolation computation

Search Strategy

- ❖The Z' candidate is most often reconstructed as Z₂ for m(Z')<42.65 GeV and as Z₁ for m(Z')>42.65
- \diamond Cut-and-count search using m(Z₁) or m(Z₂) with a sliding window
- ♦2% mass window requirement optimized simultaneously for significance and exclusion limit

Irreducible Background Estimation

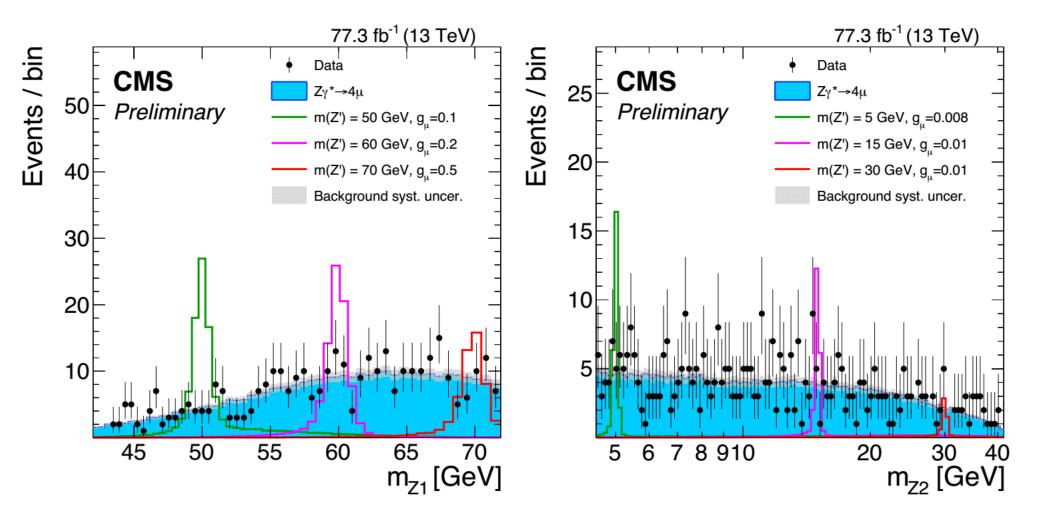
- Estimated from MC
- \diamond A polynomial function is used to parameterize and smooth the expected background yield in the 2% mass window as a function of the Z' mass hypotheses, for both m(Z₁) and m(Z₂)
- ❖ MC Statistical uncertainty is 3% for qq, 15% for gg
 - ❖ Negligible from gg in our phase space because of less cross section

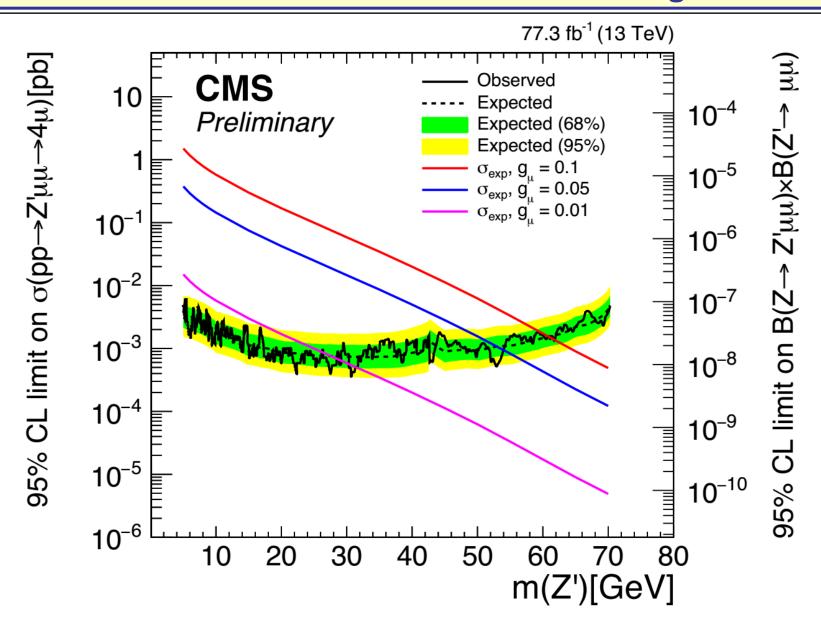

Systematic Uncertainties

Summary of relative systematic uncertainties						
Common experimental uncertainties						
Luminosity	2.6 (2.3) %					
Trigger and muon identification/reconstruction efficiencies	4.9 %					
theory systematic uncertainties						
QCD scale (gg)	± 3.9 %					
PDF set (gg)	\pm 3.5 %					
Bkg K factor (gg)	\pm 10 %					
QCD scale (q $\overline{ ext{q}} ightarrow 4 \mu$ and signal)	+3.5/-4.2 %					
PDF set (q $\overline{ ext{q}} ightarrow 4 \mu$ and signal)	+3.1/-3.4 %					
Signal related uncertainties						
MC statistical uncertainty	1.4%					
Interference effect	5 %					
Muon energy scale	0.1%					
Muon resolution	2%					
Background related uncertainties						
MC statistical uncertainty (gg)	15.0%					
MC statistical uncertainty ($q\overline{q} o 4\mu$)	3.0%					

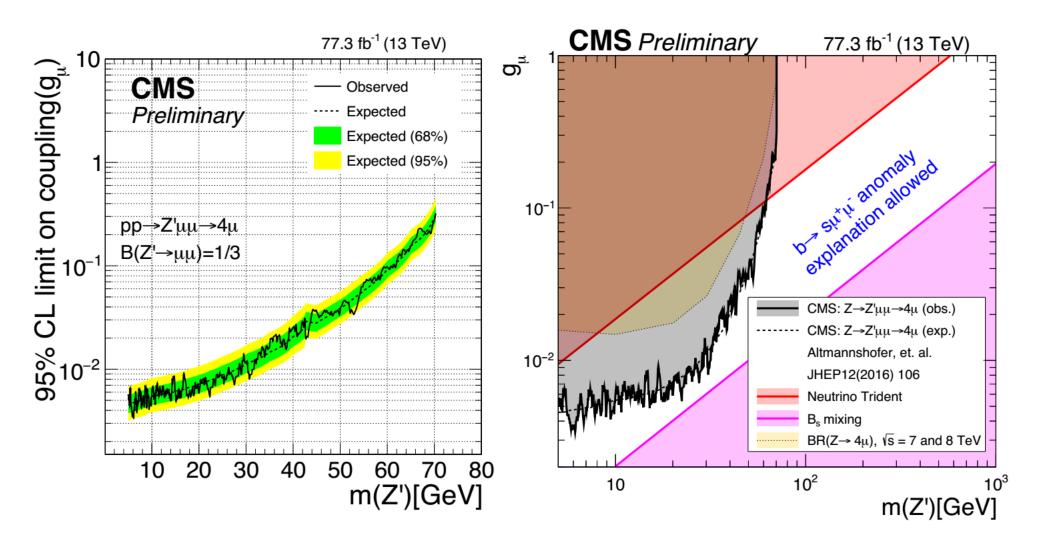
- ❖ Total Systematic uncertainty ~8%, Background Poisson statistical uncertainty always greater than 22% after final selection
- Uncertainties are correlated between 2016 and 2017

Results: Distributions


- ❖ The number of expected background and signal events and the number of observed candidate events after the full selection with 80< m_{4µ}<100 GeV.</p>
- The uncertainties in the signal predictions are purely systematic uncertainties, while in the background predictions the uncertainties also include the statistical uncertainty.


	Background	$m(Z') = 5 \text{GeV}$ $g_u = 0.008$	$m(Z') = 15 \text{GeV}$ $g_u = 0.01$	$m(Z') = 70 \text{GeV}$ $g_u = 0.5$	Observed Data
$80 < m_{4\mu} < 100 \text{GeV}$	423.0±39.2	0,	31.4±3.1	53.8±5.4	441
$4.9 < m(Z_2) < 5.1 \text{GeV}$	9.2±3.1	23.3±2.3	-	-	13
$14.7 < m(Z_2) < 15.3 \mathrm{GeV}$	7.7±2.8	_	$18.9{\pm}1.9$	-	6
$68.6 < m(Z_1) < 71.4 \text{GeV}$	34.9±6.5	-	_	36.0±3.6	35

Tahir Javaid, IHEP(CAS)


Results: Distributions

Results: Limits on Cross Sections and Branching Ratios

Results: Limits on Gauge Coupling Strength

Summary

- L_μ- L_τ model is a simple extension of the SM which can explain several anomalous experimental observation
- We have presented the first dedicated search for this model at the LHC using $Z\rightarrow 4\mu$ events in the full 2016+2017 dataset (77.3 fb⁻¹)
- No excess is observed in the signal region, and we have derived constraints on the model parameter space, significantly extending the exclusion into previously allowed regions
- ❖ PAS is made public at LHCP2018
 - ❖ IHEP contributions: contact, editors and pre-approval talk
- CWR is now over; target journal for paper is PLB

