

Higgs physics study with fermion

Lei Zhang

CPS-HEP, Shanghai, 19-24 June 2018

Higgs and Fermions interaction

LHC Run 1 legacy

• Higgs boson mass and spin-CP well constrained by bosonics channels $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow WW^*$

Higgs and Fermions interaction

- Fermion to Higgs interaction proportional to mass and alters chirality of massive Dirac fermion
- Huge mass difference (10¹¹) among fermions

LHC Run 1 legacy

• Higgs boson mass and spin-CP well constrained by bosonics channels $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow WW^*$

Higgs and Fermions interaction

- Fermion to Higgs interaction proportional to mass and alters chirality of massive Dirac fermion
- Huge mass difference (10¹¹) among fermions

LHC Run 1 legacy

• Higgs boson mass and spin-CP well constrained by bosonics channels $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow WW^*$

Run 2: Good news from Fermions

$H \rightarrow bb$ analysis strategy

$H \rightarrow bb$ analysis strategy

$H \rightarrow bb$ analysis strategy

 $p_{\pi}^{Z} \ge 150 \text{ GeV}$ Standard Jet Calibration (Std.) + u-in-iet Correction -iet + PtReco Correction Kinematic Likelihood Fi · σ)/σ 5.2 Ge 0% 13 % 18 % 24 GeV 8.8 GeV 42 % 100 120 140 160

m_{bb} [GeV]

0.8

0.6

0.4

0.2

- - μ -in-jet, b-jet energy response cor., kinematic likelihood fit
- **MVA**: main search technique
 - Validation: m(bb) main discriminant

VHbb: background estimation

- Main backgrounds modeled with MC simulation
 - Corrected to data by simultaneous fit with various categories

Evidence for VH, $H \rightarrow bb$

Results:

- Evidence of $H \rightarrow bb$ at 3.5 σ (3.0 σ exp.)
- Dominant uncertainties: signal modeling, MC statistics, b-tagging

Evidence for VH, $H \rightarrow bb$

Known Unknowns

- Discovery of Higgs prove Standard Model successful
 - Dynamics of Higgs mechanism is unknown
- Many phenomena could not be explained by SM
 - Dark matter, naturalness, etc.

Extended Higgs sector

Two-Higgs Doublets Model (2HDM)

- Minimum extension of Higgs sector, requested by MSSM
- Predicts 5 Higgs bosons: H^{+/-}, A, H, h

MSSM as bench mark model

• Two free parameters at tree level: m_A , tan $\beta = v_u/v_d$

MSSM Higgs decay to di-t

Di- τ **event selections** ($\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$)

- Opposite charge sign, τ_{lep}/τ_{had} and τ_{had} back-to-back
- Regions: b-veto (b-tag) with 0 (≥1) b-jet

MSSM Higgs decay to di-t

Di- τ **event selections** ($\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$)

- Opposite charge sign, τ_{lep}/τ_{had} and τ_{had} back-to-back
- Regions: b-veto (b-tag) with 0 (≥1) b-jet

Final discriminant: total transverse mass

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

MSSM Higgs decay to di-t

Di- τ event selections ($\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$)

- Opposite charge sign, τ_{lep}/τ_{had} and τ_{had} back-to-back
- Regions: b-veto (b-tag) with 0 (≥1) b-jet

Final discriminant: total transverse mass

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

Background modeling

Jet fake τ_{had} estimation

- Simulation not suitable: bad modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$

Jet fake τ_{had} estimation

- Simulation not suitable: bad modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$

Measured in top, W+jets, Multi-jet enriched regions
 FR_{MI}

bveto
$$\rightarrow FR_{W+jets}$$

btag $\rightarrow FR_{Top}$

$$\tau_{lep} \tau_{had}$$
: lepton fail isolation $\tau_{had} \tau_{had}$: leading tau fail ID

Jet fake τ_{had} estimation

- Simulation not suitable: bad modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$

Measured in top, W+jets, Multi-jet enriched regions

bveto
$$\rightarrow FR_{W+jets}$$

btag $\rightarrow FR_{Top}$

$$\label{eq:rescaled} \begin{array}{l} FR_{MJ} \\ \tau_{lep}\tau_{had} \colon lepton \ fail \ isolation \\ \tau_{had}\tau_{had} \colon leading \ tau \ fail \ ID \end{array}$$

- $FF = \sum_{i} w_i \cdot FF_i \ i: W+jets, MJ, Top$
- Application: $N_{bkg} = CR_{fail-ID} \times FF;$
 - CR_{fail-ID}: Failed tau-ID control region
 - w_i : composition estimated by simulation $(\tau_{had}\tau_{had})$ or data-driven $(\tau_{lep}\tau_{had})$

Di-tau results

JHEP 01 (2018) 055

A/H→tī signal modeling

EXOT-2016-04

- Reinterprete ATLAS Run1 ttbar resonance search: *JHEP 08 (2015) 148*
- Model: Signal+Inter.+BKG (S+I+B)

$H^+ \rightarrow \tau v$ search

Event selection

- $1 \tau_{had}$ and large E_{miss}^{T} (> 150 GeV)
- 3 jets (at least 1 b-jet)

Backgrounds

• Fake τ_{had} modeled with data-driven

ATLAS-CONF-2016-088

$H^+ \rightarrow tb$ estimation

Event Selection

- lepton+jets final state (lep=e,μ)
- Using MVA technique with 12 variables

Main backgrounds (ttbar+jets)

• Modeled with MC simulation, corrected to data by simultaneous fit

Summary

- Higgs to fermions Yukawa coupling established in Run 2, which is important to understand the Higgs mechanism
- Fermionic channels particularly important to explore the BSM Higgs sectors.
- Extra Higgs bosons are extensively searched at ATLAS
- With the coming more data, Higgs to fermion Yukawa coupling can be studied in further, e.g. Differential X-sec, CP violation, etc.

Systematic uncertainties

- Major Systematics
 - Tau ID, energy scale, jet fake
 - Tau sys. dominant at the high mass regime