

Search for resonances in dijet with one or two jets identified as b-jets at ATLAS

Ning Zhou (周宁) Shanghai Jiao Tong University 中国物理学会高能物理分会,上海,2018

Outline

- Motivation
- Previous searches
- Strategy
- B-tagging WP
- Background estimation
- Results
- Discussion

Search for resonances in the di-jet mass distribution with one or two jets identified as *b*-jets in proton-proton collisions at $\sqrt{s}=13$ TeVwith the ATLAS detector.

J. Alison^d, D. Amidei^g, F. Bello^c, S. Chekanov^b, A. Coccaro^c, R. Edgar^g, T. Golling^c, G. Facini^d, A. Korn^e, M. Lanfermann^c, T. LeCompte^b, B. Liu^b, J. Love^b, L. McClymont^e, O. Nackenhorst^c, N. Nishu^f, J. Proudfoot^b, S. Ryu^b, K. Sekhon^g, R. Wang^b, J. Zhang^b, N. Zhou^f

> ^aDepartment of Physics, Univ. of Oxford ^bHEP Division, Argonne National Laboratory ^cSection de Physique, Universite de Geneve ^dUniversity of Chicago, Enrico Fermi Institute ^eUniversity College London ^fShanghai Jiao Tong University ^gUniversity of Michigan

arXiv: 1805.09299, submitted to Phys. Rev. D

ATLAS NOTE

February 2, 2018

Draft version 1.2

Motivation

 \bar{q}

- Search for DM-SM mediator
 - Many BSM predict mediators con
 - The mediator may have heavy qu
 - **Spin-1**: vector Z', axial-vector Z'
 - Spin-0: Yukawa coupling
 - Spin-2: KK graviton
 - Disturbing the QCD di-jet production
- Signature
 - two jet resonance with one or both b-tagged

3

Previous Results

- 2015 data, 3.2 fb⁻¹: PLB 759 (2016) 229-246 (contact editor) and ATLAS-CONF-2016-031
 - single jet trigger (pT threshold 360 GeV in 2015), m_{ii} > 1.1 TeV
 - di-bjet trigger: 600 GeV < m_{ii} < 1.1 TeV
- 2015+2016 data, 13.3 fb⁻¹: **ATLAS-CONF-2016-060**
 - single jet trigger (pT threshold 380 GeV in 2016), m_{jj} > 1.38 TeV
- Sensitivity continues improving with more data statics and better btagging performance

Signal and Search Strategy

- 2015+2016 data: 36 fb⁻¹
- Dijet invariant mass spectrum
- Signal resonance on top of QCD background
- One or two b-tagging to suppress the background

High Mass and Low Mass Regions

- Selection and mass range are defined
 - Trigger efficiency, signal significance

Low Mass	High Mass			
Di-bjet trigger j150_j50	Single jet trigger j380			
24.3 fb ⁻¹	36.1 fb ⁻¹			
Leading jet pT > 200 GeV	Leading jet pT > 430 GeV			
Both jets $ \eta $ <2.0, sub-leading jet pT > 80 GeV				
$ y^*=(y_1-y_2)/2 < 0.6$	y* <0.8			
566 GeV < m _{jj} < 1.5 TeV	m _{jj} > 1.2 TeV			
B-tagging: 70% OP	B-tagging: 85% OP			
2 b-tag	>= 1 b-tag and 2 b-tag			

B-tagging Optimization

- B-tagging working point
 - Degrading performance with higher pT

Background Composition

- Background is dominated by mistagged light-jet
- Dijet mass spectrum is affected by the non-flat tagging efficiency

QCD Background

- MC Pythia8 QCD spectra are normalized to the >=1 b-tag and 2 b-tag separately.
- The MC-calculated spectrum shapes agree with the data.

Background Global Fitting

- In the previous searches, the QCD background is estimated by fitting the data spectrum globally
- Fitting function

$$f(x) = p_1 (1-x)^{p_2} (x)^{p_3 + p_4 \ln x + p_5 (\ln x)^2},$$

$$x = m_{jj} / \sqrt{s}$$

 Up to 13.3 fb⁻¹, the global fitting worked well.

- However, with th
 - Wilks p-value un
 - Visible spurious signal in Data/MC comparison

Background Sliding Window Fit

- For the background yield in each bin, local fit within a window
- Iterate window selection to obtain
 - Window width (largest possible window size)
 - Function form (fewest number of parameters)
 - Fit criteria: p-value>0.05
- Passing signal injection tests

Bump-Hunter Results

- No significant excesses are observed.
- P-values are ~0.6 in three categories.

Systematics

- Background modeling
 - Fit function: from alternate function
 - Fit parameter: from 1000 pseudo-experiments
- Signal modeling
 - Luminosity: 2.2% for 2016, 2.1% for 2015+2016
 - JES/bJES/JER: <5%</p>
 - B-tagging: 5%-30%

Rec. mass (TeV)	JES (para1 / para2 / para3 / para4)	JER	bJES	b -tagging SF ($\geq 1b$ -tag/ $2b$ -tag)
0.6	0.7%~/~0.5%~/~0.2%~/~0.15%	1.4%	5%	- / 5%
1.0	0.6% / $0.5%$ / $0.2%$ / $0.1%$	1.2%	3%	- / 7%
1.5	0.6% / $0.7%$ / $0.2%$ / $0.1%$	1.0%	1.8%	5%~/~10%
3	0.6%~/~0.9%~/~0.2%~/~0.05%	0.9%	0.7%	$5\% \; / \; 30\%$
5	0.6%~/~1.0%~/~1.6%~/~0.05%	0.9%	0.4%	5% / $30%$

Exclusion Limits on b*

- Bayesian approach to set 95% upper limit on cross section.
- Exclusion on b* mass reaches 2.6 TeV (previously 2.3 TeV)

Exclusion Limits on Z'

- Excluded mass @ 95% C.L.
 - SSM Z': 2.0 TeV

ح [pb]

 10^{-1}

10⁻²

- Leptophobic Z': 2.1 TeV
- DM Z' depends on decay mode and g_SM

 $\sqrt{s} = 13 \text{ TeV}, 24.3 \text{ fb}^{-1}$

— - LO DM Z'→ q \overline{q} (g_{SM}=0.1) Observed 95% CL

0.8

----- Expected 95% CL

0.7

---- ±1σ

----- ± 2 σ

0.6

- Z'->bb, g_SM=0.25: 2.1 TeV
- Z'->udcsb, g_SM=0.1: 1.03 TeV

0.9

ATLAS

2 b-tag

1.1

1.2

Exclusion Limits on Gaussian Peak

• General limits for narrow Gaussian resonance

Summary

- Search for resonances in the dijet final state with b-tagging has been performed at the ATLAS with 36 fb⁻¹.
 - Single jet trigger for high mass selection
 - Di-bjet trigger to reach low mass region
- B-tagging non-flat efficiency or fake rate introduces complexity in the background estimation.
- No significant excesses in the data.
- Strong constraints on the SSM Z', DM-SM mediator and b* are obtained.
- Next: 2015+2016+2017 data analysis (80 fb⁻¹) is starting.