Implications for the first measurement of coherent elastic neutrino-nucleus scattering

李玉峰

中科院高能所

2018-6-20

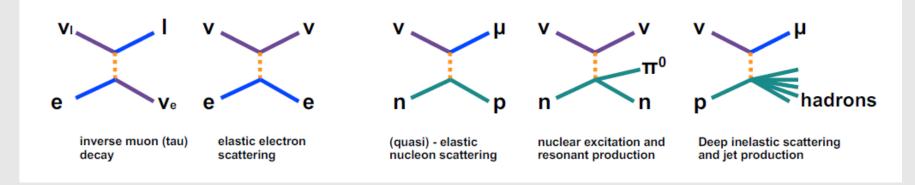
@上海

中国物理学会高能物理分会第十届全国会员代表大会暨学术年会

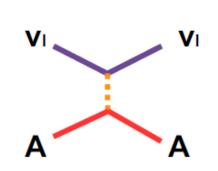
(1) Fundamentals of CEvNS

(2) The COHERENT experiment

results, prospects and beyond


(3) Implications

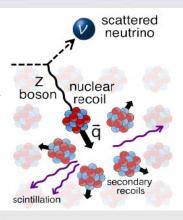
Particle physics, nuclear physics, astrophysics, application


Neutrino interactions with Matter

The Standard Model has six different interactions of neutrinos with matter:

(1) 5 have already been detected

(2) 1 has so far not been detected:



Coherent neutrino-nucleus scattering: CEvNS

(a) conceptually important(b) useful method to test new physics(c) importance of astrophysics and cosmology

Freedman, Phys.Rev. D9 (1974) 5; Drukier, Stodolsky, Phys.Rev. D30 (1984) 2295

All started 44 years ago

PHYSICAL REVIEW D

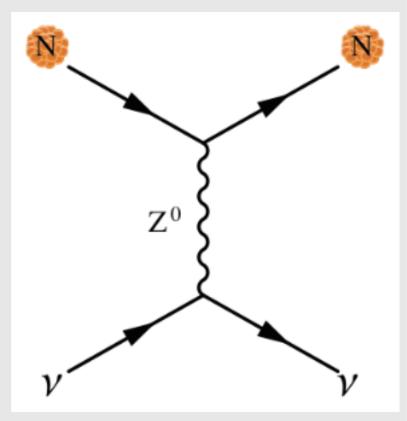
VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

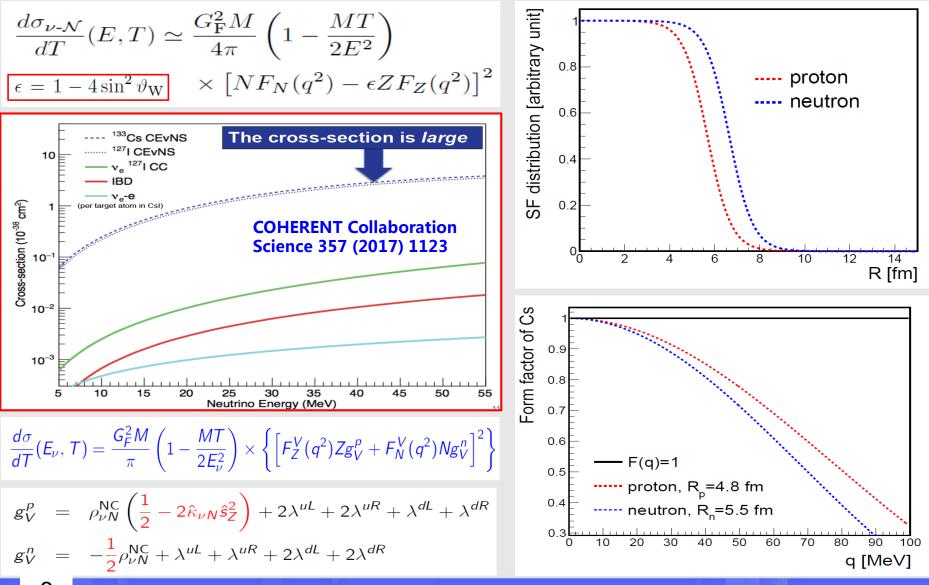

In analogy to the coherent behavior of electron-nucleus scattering

Why coherent?

Z-exchange of a neutrino with nucleus

(a) Neutrino wavelength > size of nucleus: Q*R<<1

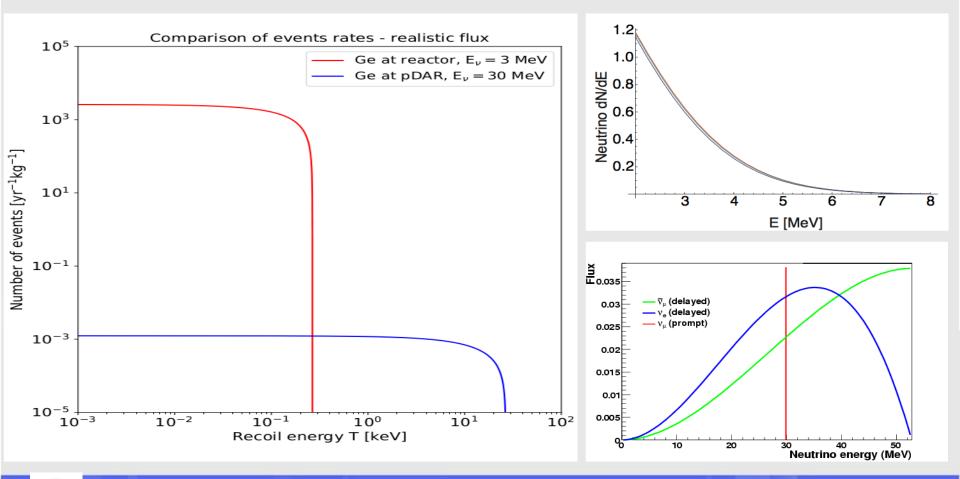
(b) Nucleon wave-functions in the target nucleus are in phase with each other at low momentum transfer: nucleus recoils as a whole



(c) So the cross section should be proportional to A²

 \rightarrow Enhanced cross section for heavy nuclei

Coherency hold up to ~ 50 MeV


The cross section: within & beyond SM

6

Why difficult?

(1) the only experimental signature: nuclear recoils(2) tiny nuclear recoil energies

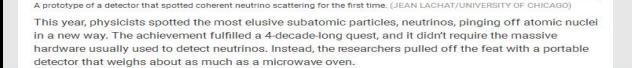
First detection in 2017

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy...
 See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

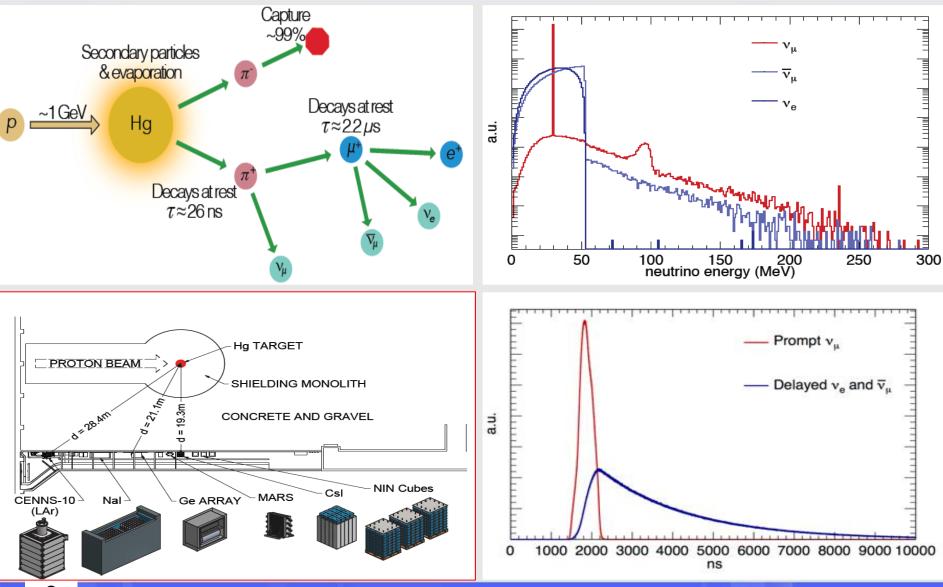
Science

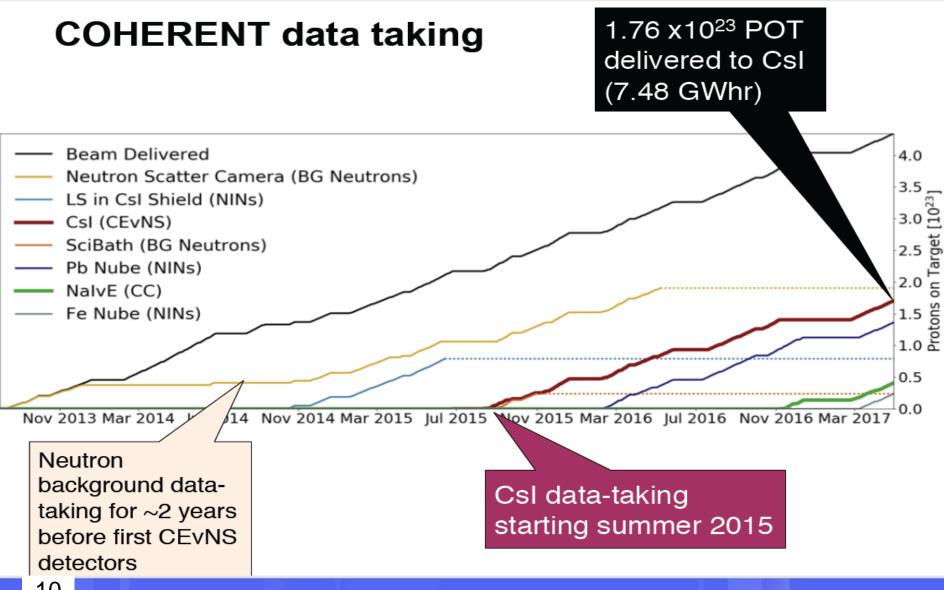

2017 BREAKTHROUGH OF THE YEAR

Cosmic convergence

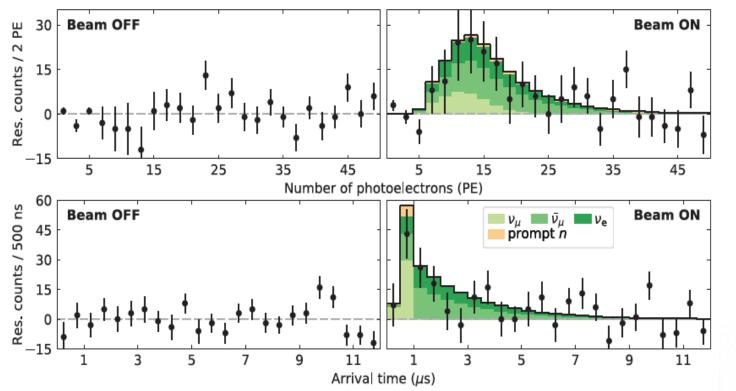
RUNNERS-UP

Life at the atomic level A tiny detector for the shiest particles Deeper roots for *Homo sapiens* Pinpoint gene editing Biology preprints take off A cancer drug's broad swipe A new great ape species Earth's atmosphere 2.7 million years ago Gene therapy triumph


A tiny detector for the shiest particles

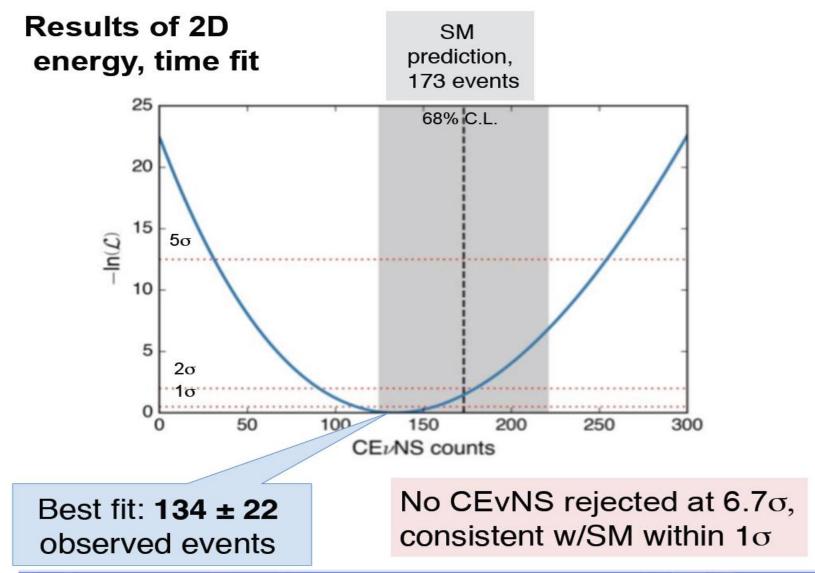


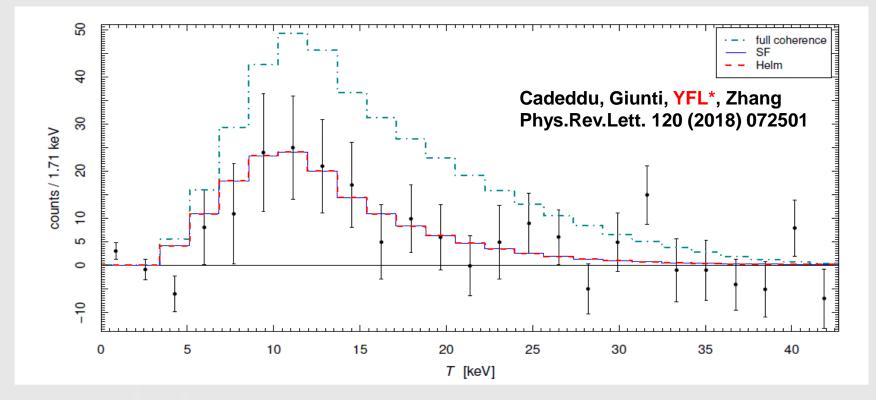
Peer Reviewed ← see details


What is "COHERENT" ?

First light with CsI (Na)

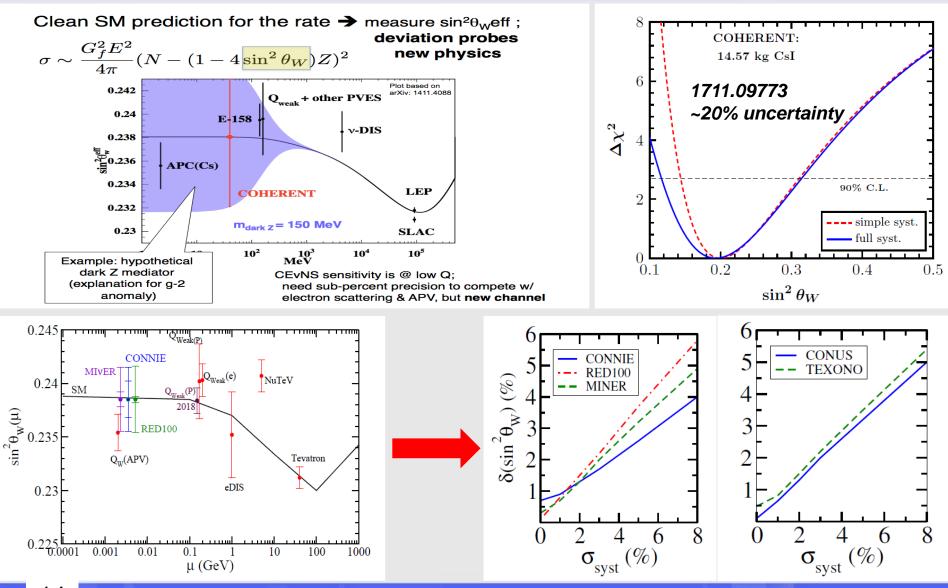
First observation of CEvNS




Akimov et al. *Science* Vol 357, Issue 6356 15 September 2017

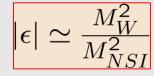
- Data are beam coincident and anti-coincident residuals during SNS operation, "On", and during SNS shutdown periods, "Off".
- Excess in light yield and timing distributions only for Beam on.

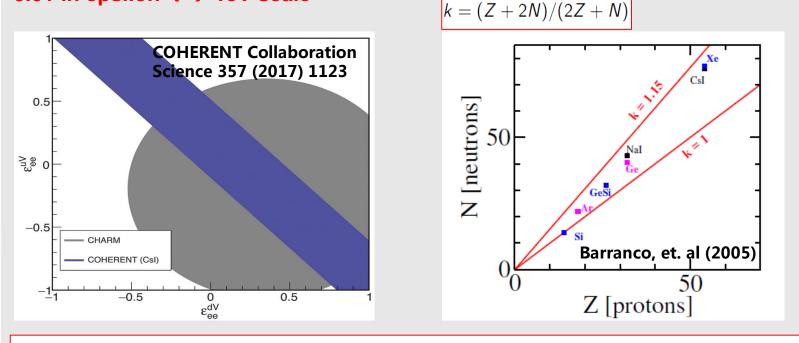
Comparison with SM


Implication-1: test of the coherency

(1) Full coherence \rightarrow Fq = Fn =1.

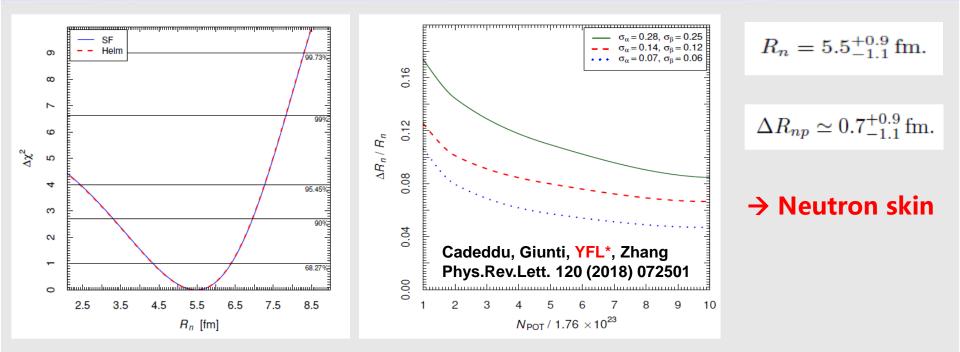
(2) COHERENT data show 2.3-sigma evidence of the nuclear structure suppression of the full coherence.


Implication-2: weak mixing angle


Implication-3: beyond SM (NSI as an example)

Neutrino (new) Non-Standard Interactions(NSIs) $\leftarrow \rightarrow$ new physics at high scales, which are integrated out

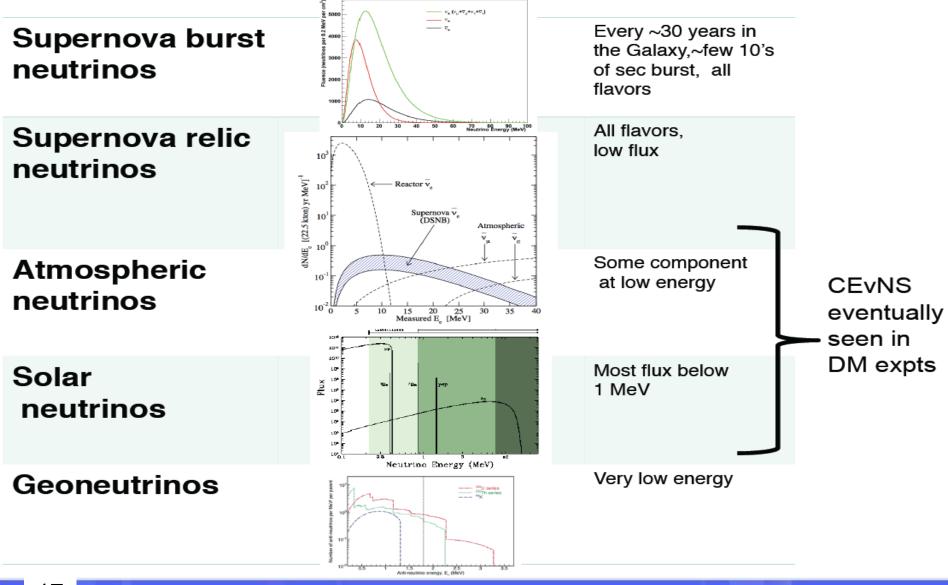
$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L \gamma_{
ho} f_L)$$


Complementary method with others, Competitive method to test the TeV scale 0.01 in epsilon $\leftarrow \rightarrow$ TeV scale

 $G_{V} = \left[\left(g_{V}^{p} + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV} \right) Z + \left(g_{V}^{n} + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV} \right) N \right] F_{nucl}^{V}(Q^{2})$

15

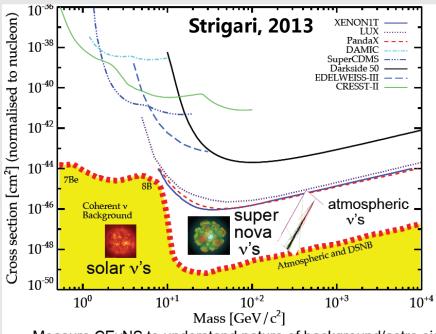
Implication-4: neutron radius



	^{133}Cs		127 I			CsI			
Model	R_p	R_n	$R_n - R_p$	R_p	R_n	$R_n - R_p$	R_p	R_n	$R_n - R_p$
SHF SkM* [20]	4.76	4.90	0.13	4.71	4.84	0.13	4.73	4.86	0.13
SHF SkP $[21]$	4.79	4.91	0.12	4.72	4.84	0.12	4.75	4.87	0.12
SHF SkI4 [22]	4.73	4.88	0.15	4.67	4.81	0.14	4.70	4.83	0.14
SHF Sly4 [23]	4.78	4.90	0.13	4.71	4.84	0.13	4.73	4.87	0.13
SHF UNEDF1 [24]	4.76	4.90	0.15	4.68	4.83	0.15	4.71	4.87	0.15
RMF NL-SH [25]	4.74	4.93	0.19	4.68	4.86	0.19	4.71	4.89	0.18
RMF NL3 [26]	4.75	4.95	0.21	4.69	4.89	0.20	4.72	4.92	0.20
RMF NL-Z2 [27]	4.79	5.01	0.22	4.73	4.94	0.21	4.76	4.97	0.21

Implication for neutron star:

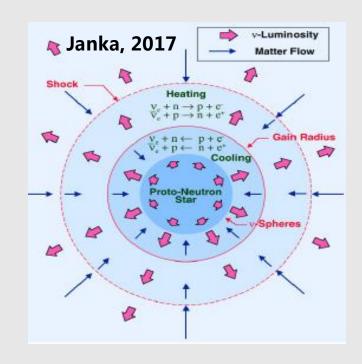
A larger neutron skin would suggest a stiffer EOS and imply a larger neutron star radius, and then a smaller gravitational binding energy.


Implication-5: detection of natural sources

Implication-6: astrophysics

DM connection

- 1) DM experiments assume coherent 1) CEvNS in Fe+Ni shells influence DM scattering: test of CEvNS
- 2) Neutrino floor of direct DM experiments *IS* the CEvNS signal



Measure CEvNS to understand nature of background/astro signal

Supernovae

momentum transport: opaqueness

2) CEvNS for detecting supernova neutrinos.

Outlook: proposals of reactors

Experiment	Technology	Location	
CONUS	HPGe	Germany	
Ricochet	Ge, Zn bolometers	France	
CONNIE	Si CCDs	Brazil	
RED	LXe dual phase	Russia	March 1
Nu-Cleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	
MINER	Ge iZIP detectors	USA	

TEXONO (Ge, Taiwan), nu-Gen (Ge, Russia) Novel low-background, low-threshold technologies

Outlook: first indication?

First rate analysis

Definition of cuts from reactor OFF time:

- energy scale calibration
- quality cuts (noise/spurious event red.)
- conservative ROI for CEvNS window (individual for every detector)

Definition of efficiencies:

- active volume: (96+-2)%
- muon AC ind. trg. Efficiency: (98+-1)%
- threshold trg. Efficiency (individual for every detector)

Rate comparison (all detectors):

	counts	counts/(d·kg) (*)]	
reactor OFF (114 kg*d)	582]	
reactor ON (112 kg*d)	653			
ON-OFF (exposure corr.)	84	0.94		
Significance	2.4 σ	2.3 σ		Some systematics still under study

(*) Including stat. uncertainty and above efficiencies

→ Observed excess of events is consistent with expected CEvNS signal range

Summary

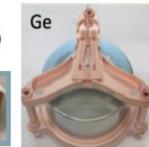
CEvNS:

(a) large cross section, but tiny recoils, αN^2 (b) accessible w/ low-energy threshold detectors , plus intensive neutrino sources.

After 43 years, first measurement by COHERENT CsI[Na] at the SNS.

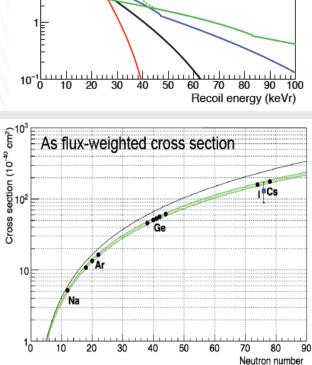
Near future: measurements with different targets in SNS, and possible detection with reactors.

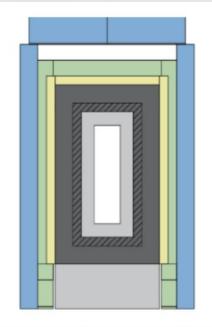
CEvNS will become an interesting tool for: tests of SM and new physics, neutron form factors, supernova dynamics, DM neutrino floor, reactor monitoring.

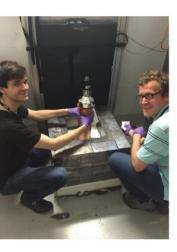

\rightarrow very interesting potential of CEvNS

Thanks!

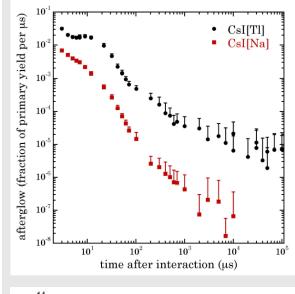
COHERENT CEvNS Detectors

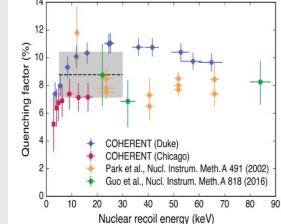

Nuclear Target	Technology	Mass (kg)	Target Distance (m)	Recoil threshold (keVr)	¹⁰³
Csl[Na]	Scintillating Crystal	14	20	6.5	Events bei
Ge	HPGe PPC	10	22	5	
LAr	Single-phase	28	29	20	
Nal[Tl]	Scintillating Crystal	185*/2000	28	13	10 ⁻¹ 0 10 20 30 40 50 60 70 80 90 100 Recoil energy (keVr)





CsI (Na) detector

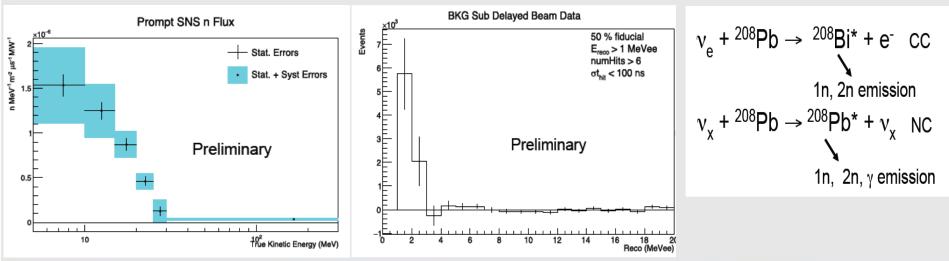




A hand-held detector!

Almost wrapped up...

Layer	HDPE*	Low backg. lead	Lead	Muon veto	Water
Thickness	3"	2"	4"	2"	4"
Colour		111			


Why CsI (Na)?

Large N² →large cross section. Cs and I surround Xe in Periodic Table. Na-doping can reduce afterglow High light yield

Background

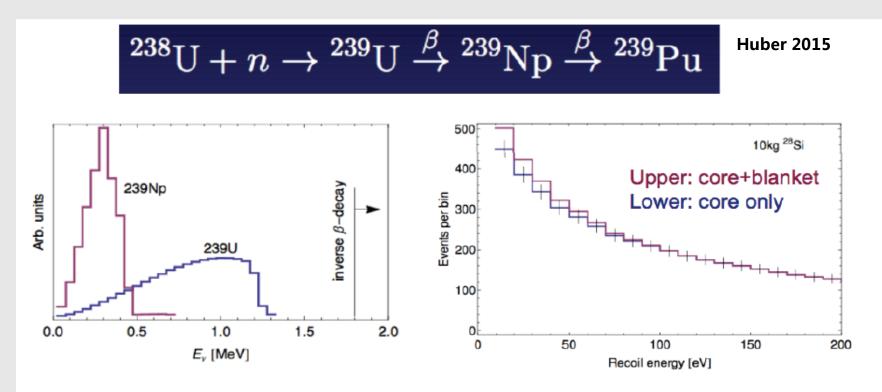
(1) Steady-state backgrounds can be measured off-beam-pulse

- cosmogenics
- ambient and intrinsic radioactivity
- detector-specific noise and dark rate
- (2) In-time backgrounds must be carefully characterized
 - two neutron detectors for fast neutrons
 - neutrino induced neutrons (NIN) blocked by HDPE, and cross section is measured by NIN tubes

Summary tables

Signal, background, and uncertainty summary numbers $6 \le PE \le 30, 0 \le t \le 6000 \text{ ns}$

Beam ON coincidence window	547 counts	
Anticoincidence window	405 counts	
Beam-on bg: prompt beam neutrons	7.0 ± 1.7	
Beam-on bg: NINs (neglected)	4.0 ± 1.3	
Signal counts, single-bin counting	136 ± 31	
Signal counts, 2D likelihood fit	134 ± 22	
Predicted SM signal counts	173 ± 48	


Uncertainties on signal and bac		
Event selection	5%	
Flux	10%	Dominant
Quenching factor	25%	
Form factor	5%	
Total uncertainty on signal	28%	
Beam-on neutron background	25%	

Reactor vs stopped-pion for CEvNS

Source	Flux/ v's per s	Flavor	Energy	Pros	Cons
Reactor	2e20 per GW	nuebar	few MeV	• huge flux	 lower xscn require very low threshold CW
Stopped pion	1e15	numu/ nue/ nuebar	0-50 MeV	 higher xscn higher energy recoils pulsed beam for bg rejection multiple flavors 	 lower flux potential fast neutron in-time bg

Implication-7: reactor monitoring

Plutonium breeder blanket in a reactor has neutrino spectral signature

v spectrum is below IBD threshold

→ accessible with CEvNS, but require low recoil energy threshold

additional sensor close to core: monitoring of burn-up and cool-down