

Search for New Heavy Bosons in single top quark final state using 36.1/fb data with the ATLAS detector

Rui Yuan Shandong University

Outline

- ≽ W'->tb
 - Introduction
 - Hadronic channel
 - Selection
 - Top tag
 - Background estimation
 - ➢ W' mass spectrum
 - Limit setting
 - Leptonic channel
 - Selection
 - Reconstruction
 - Background
 - ➤ W' mass spectrum
 - Limit setting

W'->tb: Model Introduction

- Boson, spin 1, charge ±1, introduced by many BSM theories
- \succ Chirality W'_L and W'_R
- $\succ W'_R$ can't decay to lv since $m_{\nu_R} > m_{W'_R}$
- Hadronic/leptonic channel: decay mode of W boson comes from top
 - Hadronic: 1 top quark(include 1 b quark and 2 light quarks)+ 1 isolate b quark
 - > Leptonic: 2 b quarks + 1 lepton(e, μ) + 1 neutrino

Hadronic: Selection

Data-driven method requires definition of top and bottom candidates before tagging
 Effective mass: m_{eff} = m_j + 0.15 * m_J
 Anti-kT jet

J: R = 1.0 jet,
 j: highest p_T R = 0.4 jet
 among those of which are inside J

R=1.0 jet with the highest effective Mass -> top-candidate jet

 \blacktriangleright R=0.4 jet with the highest $p_{\rm T}$ and $\Delta R > 2$ -> b-candidate jet

2 signal categories: '0 b-tag in' and '1 b-tag in' inside topcandidate jet

Hadronic: Top tag for W'

> Top-tag method: Shower deconstruction

- Exclusive kT sub-jet inside 'top jet' (splitting scale threshold = 15 GeV)
- 2 sub-jets to match W mass plus 1 more sub-jet to match top-quark mass
- Estimate the likelihood of a topquark decay vs that of a lightquark/gluon showering

 \succ Better performance in high p_{T}

Hadronic: Background

- Similar background as in single-top pair resonance search
- Dominant one is QCD multi-jet
- ABCD method for estimating background
- > Top-tag: loose/tight (80/50 W.P.)
- b-tag: tagged/not tagged (77 W.P.)
- Two taggers have non-negligible correlation. Correlation factors R are derived from QCD background simulation for each SR

0 b-tag in

Hadronic: Mass Spectrum

- 3 Signal regions
 Tight top tag, 0 b-tag in
 Loose top tag, 1 b-tag in
 Tight top tag, 1 b-tag in
- Profile likelihood fit
- Most significant systematic uncertainties
 ABCD correlation factors and b-tagging
- No excess found, perform limit setting

Tight top tag, 1 b-tag in

Hadronic: Limits Setting

- Limits for W'_R on crosssection*BR
- Exclude W'_R mass up to 3 TeV at 95% CL
- Exclude W'_Lmass up to 2.85 TeV 95% CL
- Limit at Run 1 (\sqrt{s} = 8TeV) of W'_R : 1.76 TeV, 95% CL

Leptonic: Selection

 Overlap removal: Jets Δ*R*(*Jet, elec*) = 0.2 Electrons Δ*R*(*elec, Jet*) = 0.4

Muon $\Delta R(\mu, jet) < 0.04 + 10 \text{ GeV}/pT\mu$ are rejected if the jet has at least three tracks originating from the primary vertex

Any jets with less than three tracks that overlap a muon are rejected

Common selection						
$p_{\rm T}(\ell) > 50 \text{ GeV}, p_{\rm T}(b_1) > 200 \text{ GeV}, p_{\rm T}(\text{top}) > 200 \text{ GeV}$						
$E_{\rm T}^{\rm miss}$ >30 (80) GeV, $m_{\rm T}^W + E_{\rm T}^{\rm miss}$ > 100 GeV						
Signal Region	VR _{pretag}	$VR_{t\bar{t}}$	VR _{HF}			
2 or 3 jets	2 or 3 jets	4 jets	2 or 3 jets			
1 or 2 <i>b</i> -jets	pretag	1 or 2 <i>b</i> -jets	1 <i>b</i> -jet			
$\Delta R(\ell, b_{\rm top}) < 1.0$			$\Delta R(\ell, b_{\rm top}) > 2.0$			
$m_{tb} > 500 \text{ GeV}$			$\Delta R(b_1, b_{\rm top}) > 1.5$			

Leptonic: Reconstruction

$$P_{z,\nu}^2 - 2 \cdot \frac{\mu \cdot P_{z,\ell}}{E_{\ell}^2 - P_{z,\ell}^2} \cdot P_{z,\nu} + \frac{E_{\ell}^2 \cdot P_{T,\nu}^2 - \mu^2}{E_{\ell}^2 - P_{z,\ell}^2} = 0, \tag{1}$$

with
$$\mu = \frac{m_W^2}{2} + \cos \Delta \Phi \cdot P_{T,\ell} \cdot P_{T,\nu}.$$
 (2)

$$P_{z,\nu}^{A,B} = \frac{\mu \cdot P_{z,\ell}}{P_{T,\ell}^2} \pm \sqrt{\frac{\mu^2 \cdot P_{z,\ell}}{P_{T,\ell}^4} - \frac{E_\ell^2 \cdot P_{T,\nu}^2 - \mu^2}{P_{T,\ell}^2}}.$$
(3)

> Neutrino p_z calculation

- Estimated from MET and W mass constraint
- Modify when discriminant < 0</p>
- ➢ Top and W' reconstruction
 - Find jet that gives m_{lvb} closest to top-quark mass: jet "b from top"
 - Assign highest pT remaining jet to W' decay: jet "b from W' "

Leptonic: Background

- > *ttbar,* single-top, diboson and W+jets backgrounds
 - Modeled using the simulated MC samples
 - Dominant in signal regions: ttbar and W+jets production, the normalisation of these backgrounds is allowed to float freely in fit
- Multijet background

	Estimate	from	data	using	Matrix	Method
--	----------	------	------	-------	--------	--------

	2-jet 1-tag (e [±])	2-jet 1-tag (μ [±])	3-jet 1-tag (e [±])	3-jet 1-tag (μ^{\pm})
$W'_{\rm R}$ (1.0 TeV)	1517 ± 32	2029 ± 39	1159 ± 31	1665 ± 35
W'_{R} (2.0 TeV)	83.4 ± 1.7	132.9 ± 2.1	105.0 ± 1.9	167.4 ± 2.2
W'_{R} (3.0 TeV)	4.7 ± 0.1	10.4 ± 0.2	7.0 ± 0.2	15.7 ± 0.2
W'_{R} (4.0 TeV)	0.4 ± 0.0	1.0 ± 0.0	0.6 ± 0.0	1.6 ± 0.0
W'_{R} (5.0 TeV)	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.2 ± 0.0
tī	1144 ± 24	1531 ± 30	3356 ± 57	4270 ± 78
Single-top	472 ± 20	655 ± 28	484 ± 23	639 ± 27
W+jets	500 ± 51	1285 ± 140	530 ± 45	1100 ± 100
Multijets	330 ± 37	640 ± 120	173 ± 20	394 ± 70
Z+jets	115 ± 17	179.4 ± 9.8	113 ± 13	215 ± 23
diboson	20.7 ± 1.7	34.4 ± 9.8	16.5 ± 2.2	28.5 ± 3.1
Total background	2583 ± 72	4320 ± 190	4672 ± 80	6650 ± 150
Data	2637	4307	4642	6606

Leptonic: Mass Spectrum

➢ SR: 2/3jets+1/2b-tag+e/µ

- Below masses of 2 TeV the dominant uncertainty: *ttbar* normalization and shape modeling
- At higher masses the dominant source of uncertainty: multijet background and b-tagging uncertainty
- 2-jets vs 3-jets region crossextrapolation has been considered because of the categorization for signal regions

Leptonic: Limit Setting

- Limits on W'_R crosssection * BR
- Exclude W'_R mass up to 3.15TeV at 95% CL
- > Limit at Run 1 (\sqrt{s} = 8TeV) of W'_R : 1.92 TeV, 95% CL
- Exclude W'_R mass up to 3.25TeV at 95% CL, combined with W'->tb hadronic channel result

Leptonic: Limit Setting

- Limits on the ratio of couplings g'/g as a function of the W' mass are derived from the limits on the W' cross section
- Different couplings
 lead to different cross
 sections and widths

Summary

 Present 2 recent results of searching for heavy resonances decayed to top and bottom quark
 W'->tb->qqbb

- ≻W'->tb->lvbb
- No significant deviation between data and background prediction
- Significant improvement on mass limits from Run 1 for both analyses

Backup

Hadronic: Event yields

"0 <i>b</i> -tag in" category							
	SR1	QCD validation region	Region 3	Region 4	Region 5	Region 6	
Data	16333	57626	65600	267000	959000	12600000	
QCD + V + jets(ABCD)	15247.40 (96.11%)	54474.10 (98.59%)					
tī	616.57 (3.88%)	778.50 (1.41%)	1517.00	2372.50	3434.00	5066.00	
"1 <i>b</i> -tag in" category							
51 	SR3	SR2	Region 3	Region 4	Region 5	Region 6	
Data	4265	12834	78300	56000	188000	1220000	
QCD + V + jets(ABCD)	3251.66 (74.45%)	11155.20 (99.69%)					
tī	1115.72 (25.54%)	1144.43 (9.30%)	1116.00	5312.30	6700.00	5590.00	

Hadronic: W'_L limit plot

Combined W'_R limit plot

	$2 \cot 2 \tan (a^{\pm})$	$2 i a t 2 t a a (w^{\pm})$	$2 i a t 2 t a a (a^{\pm})$	2 i a t 2 t a a (u t)
	2-jet 2-tag (e ⁻)	2-jet 2-tag (μ^{-})	5-jet 2-tag (e ⁻)	3-jet 2-tag (μ^{-})
$W'_{\rm R}$ (1.0 TeV)	1584 ± 35	2055 ± 38	1241 ± 30	1749 ± 34
$W_{\rm R}^{''}$ (2.0 TeV)	33.5 ± 1.0	55.5 ± 1.2	51.6 ± 1.2	84.3 ± 1.5
$W'_{\rm R}$ (3.0 TeV)	1.4 ± 0.1	2.6 ± 0.1	2.5 ± 0.1	5.1 ± 0.1
$W_{\rm R}^{''}$ (4.0 TeV)	0.1 ± 0.0	0.3 ± 0.0	0.2 ± 0.0	0.5 ± 0.0
$W_{\rm R}^{''}$ (5.0 TeV)	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
tī	565 ± 15	810 ± 17	2582 ± 33	2737 ± 37
Single-top	125.6 ± 6.8	187 ± 12	242 ± 14	304 ± 18
W+jets	29.0 ± 6.0	38.9 ± 4.2	49.2 ± 4.9	79.4 ± 8.0
Multijets	33.4 ± 6.4	70 ± 15	84 ± 11	119 ± 22
Z+jets	2.2 ± 0.4	10.2 ± 1.5	11.8 ± 1.4	17.3 ± 2.1
diboson	0.0 ± 0.0	1.2 ± 0.2	11.5 ± 2.0	5.2 ± 0.7
Total background	755 ± 18	1117 ± 26	2980 ± 38	3262 ± 48
Data	706	1117	2976	3278