

Supersymmetry (SUSY)

SUSY Search at LHC and Beyond

Xuai Zhuang (庄胥爱)

xuai.zhuang@cern.ch

Institute of High Energy Physics

CHEP 2018, Shanghai, 20-22 Jun. 2018

Introduction

New Physics beyond the SM

- SM fits the experimental data very well in EW scale, while has problem in Planck scale.
- Need a more fundamental theory in which SM is only a low-energy approximation New Physics.
- SUSY establishes a symmetry between fermions (matter) and bosons (forces)
 - o Unification
 - Solves deep problems of the SM
 - Provide Dark Matter candidate

0 ...

SUSY search is one of the most hot topic at LHC and beyond

OUR WORLD...

NEW WORLD?

Outline

TeV)

SUSY Search @ LHC

ppLPCC SUSY Cross Section WG J(pp→ SUSY) [pb], NLO-NLI Events in 300 fb 10^{-1} = 13 TeV 0^{-2} 10^{3} 10^{-3} $=10^{2}$ 10^{-4} 10 2000 1000 0 SUSY sparticle mass [GeV] https://twiki.cern.ch//wiki/bin/view/LHCPhysics/SUSYCrossSections arXiv:1407.5066 $\tilde{\chi}_1^{\pm}$ p

 $ilde{\chi}^{0}_{2}$

Strong production:

targeting gluinos and 1st and 2nd generation squarks

ATLAS public link

CMS public link

□ by far largest cross-sections

3rd generation:

- targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

SUSY Search @ LHC

pLPCC SUSY Cross Section WG J(pp→ SUSY) [pb], NLO-NLI Events in 300 fb 10^{-1} = 13 TeV 0^{-2}) himsing 10^{3} 10^{-3} $=10^{2}$ 10^{-4} 10 2000 1000 0 SUSY sparticle mass [GeV] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections arXiv:1407.5066

Strong production:

targeting gluinos and 1st and 2nd generation squarks

ATLAS public link

CMS public link

- by far largest cross-sections
- 3rd generation:
- □ targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

Direct squark & gluino decays (all had.)

Corresponding sparticle mass limits for **BF=100%**:

- Squarks: up to 1.55 TeV assuming 8-fold squark degeneracy
- Gluinos: up to 2.05 TeV with neutralinos up to 1.1 TeV

Gluino decays to 3rd Gen. squarks

Corresponding sparticle mass limits for **BF=100%**:

- Gtt: Gluinos up to 1.97 TeV with neutralinos up to 1.19 TeV
- Gbb: Gluinos up to 2.05 TeV with neutralinos up to 1.2 TeV

Multi-step decays

Signal: 1 or 2/3 leptons, jets and MET

Corresponding sparticle mass limits for **BF=100%**:

Gluino mass up to 1.8-2 TeV, LSP up to 1-1.2 TeV

Strong Production (summary)

3rd Generation: stop

Search for stop directly from ~t~t production
 Large spectrum of possible stop decays, covering range from low to heavy stop mass, various decay modes.

3rd Generation: stop/sbottom (leptonic)

3rd Generation (summary)

□ For bottom squarks: exclusion limits beyond 1 TeV (CMS-PAS-SUS-16-032)
 □ Still <600 GeV for compressed region, also for stop→charm+MET (ATLAS-CONF-2017-038)

SUSY Search @ LHC

C1N2: via slepton decay (2I/3I)

14

C1N2: via WZ decay (2I/3I)

RJR (Recursive Jigsaw Reconstruction): reconstruction of intermediate rest-frames

) Lab State) Decay States) Visible States) Invisible States

LAF

b

- ~ 3s excesses seen in the SRs targeting low mass-splitting for RJR analysis
- Not seen in the conventional search targeting the same signal model

C1N2: via WH decay (11bb)

- Wino-like mass spectrum: large xSec.
- Dedicated search for WH topology
- 1 lepton(e/mu)+bb: clean final states, large BR from H→bb
- Probe chargino mass up to 550 GeV

IHEP is working on Wh ($1I\tau\tau$) analysis.

Direct slepton pair

<u>arXiv:1803.02762</u> Phys. Rev. D 93, 052002 (2016)

CMS-PAS-SUS-17-003

PRD97(2018)052010

Compressed scenarios with soft leptons

EWK Production (summary)

- Powerful exclusions in decays via sleptons (C1/N2 up to 0.6-1.1 TeV)
- **Exclusions is not so large in decays via bosons** (up to 150-600 GeV)
- □ Mass limit on selectron/smuon up to 500 GeV, not yet on staus

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,$	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{k}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell \tilde{\chi}_{1}^{0}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell \ell / \gamma \tilde{\chi}_{1}^{0}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{k} \tilde{k} \end{pmatrix}$	0 mono-jet 0 <i>ee</i> , μμ 3 <i>e</i> , μ 0 1-2 τ + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	\$\vec{q}\$ 710 GeV \$\vec{v}\$ \$\vec{v}\$	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 Te 2.05 Te	$\begin{split} &m(\tilde{x}_{1}^{0})\!<\!200~\text{GeV}, m(1^{st}~\text{gen},\tilde{q})\!=\!m(2^{nd}~\text{gen},\tilde{q}) \\ &m(\tilde{x}_{1}^{0})\!+\!5~\text{GeV} \\ &m(\tilde{x}_{1}^{0})\!<\!200~\text{GeV} \\ &m(\tilde{x}_{1}^{0})\!<\!200~\text{GeV}, m(\tilde{x}^{0})\!=\!0.5(m(\tilde{x}_{1}^{0})\!+\!m(\tilde{g})) \\ &m(\tilde{x}_{1}^{0})\!<\!300~\text{GeV}, \\ &m(\tilde{x}_{1}^{0})\!=\!0~\text{GeV} \\ &m(\tilde{x}_{1}^{0})\!=\!0~\text{GeV} \\ &m(\tilde{x}_{1}^{0})\!=\!1700~\text{GeV}, c\tau(NLSP)\!<\!0.1~\text{mm}, \mu\!>\!0 \\ &m(\tilde{x}_{1}^{0})\!=\!1700~\text{GeV}, c\tau(NLSP)\!=\!0.1~\text{st}, pr(\tilde{a})\!=\!1.5~\text{TeV} \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
3 rd gen. ẽ med.	$ \begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0 \end{array} $	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1	ř ř	1.92 TeV 1.97 TeV	m($\tilde{\chi}_1^0$)<600 GeV m($\tilde{\chi}_1^0$)<200 GeV	1711.01901 1711.01901
3 rd gen. squarks direct production	$ \begin{split} \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{x}_1^\pm \\ \bar{i}_1 \bar{t}_1, \bar{i}_1 \to b \bar{x}_1^\pm \\ \bar{i}_1 \bar{t}_1, \bar{i}_1 \to b \bar{x}_1^\pm \\ \bar{i}_1 \bar{t}_1, \bar{i}_1 \to C_1^0 \\ \bar{i}_1 \bar{i}_1, \bar{i}_1 \to C_1^0 \\ \bar{i}_1 \bar{i}_1 (natural GMSB) \\ \bar{i}_2 \bar{i}_2, \bar{i}_2 \to \bar{i}_1 + Z \\ \bar{i}_2 \bar{i}_2, \bar{i}_2 \to \bar{i}_1 + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \ (C) \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b D-2 jets/1-2 i mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 I.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	b1 950 GeV b1 275-700 GeV ī1 117-170 GeV 200-720 GeV ī1 90-198 GeV 0.195-1.0 TeV ī1 90-430 GeV 1 ī1 90-430 GeV 1 ī2 290-790 GeV ī2 320-880 GeV		$\begin{split} m(\tilde{x}_{1}^{0}) &< 420 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &< 200 \text{GeV}, m(\tilde{x}_{1}^{\pm}) = m(\tilde{x}_{1}^{0}) + 100 \text{GeV} \\ m(\tilde{x}_{1}^{\pm}) &= 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) = 55 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 1 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 15 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 150 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 10 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 0 \text{GeV} \\ m(\tilde{x}_{1}^{0}) &= 0 \text{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (bino NLSP) weak prod., \tilde{\chi}_{1}^{0} \rightarrow GGM (bino NLSP) weak prod., \tilde{\chi}_{1}^{0} \rightarrow \end{split} $	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2-3 e, \mu$ e, μ, γ $4 e, \mu$ $\gamma \tilde{G} 1 e, \mu + \gamma$ $\gamma \tilde{G} 2 \gamma$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	● ∕ m(ξ [*] 1). m(ξ ⁰ 2): √	$\begin{split} & m(\tilde{x}_1^0){=}0 \\ & m(\tilde{x}_1^0){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{k}_1^{-1}){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_1^0){=}0, m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{k}_1^{-1}){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{k}_1^{-1}){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_1^{-1}){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{k}_1^{-1}){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{k}_1^0){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{k}_2^0){+}m(\tilde{k}_1^0)) \\ & c_{T}{<}1 mm \\ & c_{T}{<}1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	$ \begin{array}{l} \text{Direct} \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-} \text{ prod., long-lived } \tilde{\chi}_1^{\pm} \\ \text{Direct} \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-} \text{ prod., long-lived } \tilde{\chi}_1^{\pm} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Stable } \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron} \\ \tilde{g} \text{ R-hadron} \\ \tilde{g} \text{ R-hadron} \\ \tilde{g} \text{ Adron} \\ \tilde{g} \text{ R-hadron} \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^0 \rightarrow \tilde{q}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu) \\ \text{GMSB, } \tilde{\chi}_1^0 \rightarrow \tilde{q}(\tilde{e}, \mu) + \tau(e, \mu) \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v \\ \end{array} $	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - μ -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c c} \ddot{x}_{1}^{\pm} & 460 {\rm GeV} \\ \ddot{x}_{1}^{\pm} & 495 {\rm GeV} \\ \ddot{s} & 850 {\rm GeV} \\ \ddot{s} & \\ \ddot{s} & \\ \ddot{s} & \\ \ddot{x}_{1}^{0} & 537 {\rm GeV} \\ \ddot{x}_{1}^{0} & 440 {\rm GeV} \\ \ddot{x}_{1}^{0} & 1.0 {\rm TeV} \end{array}$	1.58 TeV 1.57 TeV 2.3	$\begin{split} & m(\tilde{x}_1^0) - m(\tilde{x}_1^0) - 160 \text{ MeV}, \tau(\tilde{x}_1^+) = 0.2 \text{ ns} \\ & m(\tilde{x}_1^-) - m(\tilde{x}_1^0) - 160 \text{ MeV}, \tau(\tilde{x}_1^+) < 15 \text{ ns} \\ & m(\tilde{x}_1^0) = 100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s} \\ & m(\tilde{x}_1^0) = 100 \text{ GeV}, \tau > 10 \text{ ns} \\ & 7 \text{ TeV} \tau(\tilde{g}) = 0.17 \text{ ns}, m(\tilde{x}_1^0) = 100 \text{ GeV} \\ & 10 < \tan \beta < 50 \\ & 1 < \tau(\tilde{x}_1^0) < 3 \text{ ns}, \text{SPS8 model} \\ & 7 < c \tau(\tilde{x}_1^0) < 740 \text{ mm}, m(\tilde{g}) = 1.3 \text{ TeV} \\ \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow eev, e\mu\nu, \mu\mu\nu$ $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow qqq$ $\tilde{g}, \tilde{g} \rightarrow qq\tilde{x}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow qqq$ $\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{X}_{1}^{+}, \tilde{X}_{1}^{+} \rightarrow qqq$ $\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{X}_{1}^{+}, \tilde{X}_{1}^{+} \rightarrow qqq$ $\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}\tilde{t}, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 b - -5 large-R je -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	- Yes Yes Pts - b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	\bar{p}_{τ} \bar{q}, \bar{g} \bar{x}_{1}^{\pm} 1.14 \bar{x}_{1}^{\pm} 450 GeV \bar{g} \bar{g} \bar{g} \bar{g} \bar{i}_{1} 100-470 GeV 480-610 GeV \bar{i}_{1} 0.	1.9 TeV 1.45 TeV TeV 1.875 TeV 2.1 Te 1.65 TeV 4- 1.45 TeV	$\begin{array}{l} \lambda_{111}'=0.11, \lambda_{132/133/233}=0.07\\ m(\vec{q})=m(\vec{g}), cr_{LSP}<1 \text{ mm}\\ m(\vec{k}_{1}^{0})>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)\\ m(\vec{k}_{1}^{0})>0.2\times m(\vec{k}_{1}^{1}), \lambda_{133}\neq 0\\ m(\vec{k}_{1}^{0})=1075 \text{ GeV}\\ \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other *Only phen simp	Scalar charm, $\tilde{c} \rightarrow \tilde{c}_1^{\gamma}$ a selection of the available mas omena is shown. Many of the l ified models c f refs for the a	0 ss limits on r imits are bas ssumptions	2 c new state: sed on made	Yes s or	20.3 1	≥ 510 GeV	1	m(দ̃')<200 GeV Mass scale [TeV]	1501.01325 20

ATLAS Preliminary

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

Only a selection of available mass limits. Probe *up to* the quoted mass limit for mg ~0 GeV unless stated otherwise

Prospects at HL-LHC

ATL-PHYS-PUB-2014-010

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14TeV
 Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos, 500 GeV stau with 3000 fb⁻¹.

Prospects at Future Collider

- Long term prospects for 2 more collider scenarios have been studied (33, 100 TeV @3000 fb⁻¹)
- Use same search strategy as 8-13TeV @LHC
- Use simple analysis strategies, assume 20% syst. uncertainty, avoid assumption on detector design, pileup sensitivity, etc

Prospects at Future Collider

Discovery potential (exclusion) up to 11 (13) TeV gluinos, 6.5 (8) TeV squarks/sbottom and 2.1 (3.2) TeV Electroweakinos.

Summary and Outlook

Compressed scenarios with soft leptons

* when it comes to natural SUSY, particular interest lies upon higgsinos!

- + i.e. charginos and neutralinos with dominant higgsino component
- re-interpretation of the WZ-like model with dominant higgsino component (left)
 - + improvement of the LEP limit (~ 100 GeV) for the first time!
- * also interpretation in pMSSM framework as function of $M_1 = (1/2)M_2$ and μ (right)

Higgsino LSP SUS-16-048

LHC / HL-LHC Plan

Upgrade muon/calorimeter

Upgrade of DAQ detector readout

electronics

30

2015+2016 – A milestone for SUSY

This means:

- We explored 85% of our mass reach for gluino pair production, about 75% for stop
- ~60% for gauginos, and just above 50% for higgsinos

SUSY models: good sale in market

□ Simplified Models:

- Not really a model (Br~100%, most masses fixed at high scales)
- Important tool for interpretation

□ Phenomenological models:

- pMSSM: captures "most" of phenomenologic features of Rparity conserving MSSM
 - 19 free parameters: M1,M2,M3 ; tan β, μ and m_{A;} 10 sfermion mass parameters; A_t, A_b and A_τ
 - Comprehensive and computationally realistic approximation of the MSSM with neutralino LSP
- GGM (gravitino)

Complete SUSY models: mSUGRA, GMSB ...

SUSY Signature & Search Strategy

R parity: originally introduced for stability of proton $R = (-1)^{3(B-L)+2S}$ R=+1 (SM) R=-1 (SUSY)

• Conserved R parity (RPC):

Provide Dark Matter (DM) candidate

Typical signature: jets/leptons/photons + MET

• Violated R parity (RPV): no DM candidate

- \circ SUSY sensitive variables: E_T^{miss} , Meff ...
- Accurate modeling of SM background

SM Background Modeling

Standard Model

Top, multijets V, VV, VVV, Higgs & combinations of these

Combined fit of all regions and bgs, and including systematic exp. and theory uncertainty as nuisance parameters

Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

Dominant sources:

- Mulit-jet: data-driven
- Non-Multi-jet: normalise

MC in data control regions

□ Subdominant sources: MC

Validation

Validation regions used to cross check SM predictions with data

Signal regions

blinded

blinded

SUSY Sensitive Variables

- **E_T^{miss}** from escaping LSP, to suppress bg from mismeasured jets and oth. SM BG
- Related to the sparticle mass scale, like effective mass (**M**_{eff})

$$M_{\text{eff}} \equiv \sum_{i=1}^{N_{\text{jets}}} p_{\text{T}}^{\text{jet},i} + \sum_{j=1}^{N_{\text{lep}}} p_{\text{T}}^{\text{lep},j} + E_{\text{T}}^{\text{miss}}$$

mT, mT2 (stransverse mass): suppress BG with Ws

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

Many others ...

the complementary search using the **Recursive Jigsaw Reconstruction (RJR) techniques** in the construction of a discriminating variable set ('RJR-based search'). By using a dedicated set of selection criteria, the RJR-search improve the sensitivity to supersymmetric models with small mass splittings between the sparticles (models with compressed spectra).

Recursive jigsaw reconstruction

- based on assumption of decay tree
- fix set of rules to resolve combinatorics and unknowns in invisible system
- can form set of variables in the rest frame of each level in the decay tree

RPV SUSY

- Precision SM measurements support baryon and lepton number conservation, while some MSSM couplings do not
- Search for R-parity Violating SUSY
- Super-potential with RPV of lepton or baryon number

RPV SUSY signatures:

- Decaying LSP → Iower Missing Transverse Energy (MET)
- Many jets (or leptons) in the final states

SUSY RPV: 1L + multi-jets

RPV SUSY signatures:

JHEP 09 (2017) 88

- Decaying LSP \rightarrow lower Missing Transverse Energy (MET)
- Many jets (or leptons) in the final states
- Signatures showed: 1lepton + multi-jets (\geq 8-12) and (0, \geq 3) bjets

Long-Lived particles in SUSY

Long-Lived particles in SUSY

Long-lived R-hadron production

Long lived chargino

Strong Production: photonic signatures

- We can use photon(s) to probe for strong production signals
 - \rightarrow suppressed hadronic backgrounds

41

An attempt to map out the SUSY model space with all the ATLAS analyses, giving an impression of where SUSY could still hide ...

42

Figure 12: Expected 5σ discovery contours for the $\sqrt{s} = 14$ TeV LHC [left] and a 100 TeV proton collider [right] with 3000 fb⁻¹. The different curves correspond to various assumptions for the systematic uncertainty on the background: 5% [green], 10% [red], 20% [blue], and 30% [black].

- It is likely that the experiments will significantly reduce these uncertainties with larger datasets and an improved understanding of their detectors
- Varying the systematic background uncertainty from 30% to 5%, the discovery reach increases by roughly 600 GeV (3.4 TeV) in m(~g) at 14 TeV (100 TeV) and the coverage in LSP direction is roughly doubled

Impact of Pileup

Figure 14: Discovery contours [right] and expected limits [left] for the analyses performed with [red, dotted] and without [black, solid] pileup at the 14 TeV LHC with 3000 fb⁻¹ integrated luminosity.

- Compared the results with 140 additional minimum-bias interactions
- The Delphes based Snowmass simulation includes a pileup suppression algorithm that primarily impacts the Emiss resolution (Snowmass detector:ArXiv:1309.1057)
- Given that the HT and ETmiss distributions are effectively unchanged, it is not surprising that the results are very similar with and without pileup

