CGEM探测器离线软件研究

伍灵慧 wulh@ihep.ac.cn

代表BESIII CGEM-IT软件研究组

2018年全国粒子物理大会 上海交通大学 2018.6.20-24

Outline

Introduction

- Full detector simulation
- >Track reconstruction

Summary

Aging of MDC inner chamber

- Hit efficiency of the BESIII MDC inner layers drops year by year due to aging
- Cylindrical GEM inner tracker (CGEM-IT) is a candidate for upgrade of MDC inner chamber

CGEM Inner Tracker (CGEM-IT)

Readout method of CGEM-IT

> Analog readout

- Q for charge centroid method in cluster reconstruction
- T for micro-TPC method in track segment reconstruction

CGEM-IT Offline Data Processing Software

Full detector simulation

Detector construction in Geant4

Digitization is the simulation of detector response

Digitization modeling

Ionization

Drift and multiplication

Induction

Ionization

- Garfield++ has been integrated into BESIII software system as an external package to simulate ionization
- Conversion of global and local coordinate is used to simplify the geometry construction in Garfield
- Ignore the energy loss from Geant4

Drift and multiplication

- Sample the parameters of multiplied electrons in 3 steps
 - Number of multiplied electrons (n)
 - Position (φ, z)
 - Drift time (t)
- Preliminary sampling parameters are obtained from Garfield++ simulation

Garfield++ simulation

- To study the drift behavior and multiplication of a single electron
- The simulation is divided into 3 parts to reduce CPU time
- Preliminary parameters for sampling are obtained from the simulation
 - Lorentz angle, diffusion, drift time, effective gain

Original electrons are produced uniformly in the square

Parameters for sampling from Garfield++

Region	Drift	Transfer1	Transfer2	Induction
Lorentz angle (deg	ree) 25.5	10.9	10.9	6.5
Sigma_X (mm)	$0.0725+0.0918*\delta Y$ - $0.0140*(\delta Y)^2+0.00121*(\delta Y)^3$	0.174	0.174	0.155
Sigma_Z (mm)	$0.0674+0.0762*\delta Y-$ $0.0111*(\delta Y)^2+0.00089*(\delta Y)^3$	0.170	0.169	0.152
T (ns)	4.917+29.16*δY	58.47	58.33	52.77
δT (ns)	0.855+1.116*δY - 0.202*(δY) ² +0.0200*(δY) ³	2.152	2.132	1.859
τ (%)	80.9	61.4	61.6	-
G_{0}	20.0	21.0	27.9	-

Induction

>Under study

Described by drift in the first version

Preliminary results of digitization algorithm

Track reconstruction

CGEM cluster reconstruction

x pitch v

v pitch

- 1. Continuous firing strips in X (or V): X-cluster (or V-cluster)
- 2. Intersection between X and V clusters: XV-cluster
- 3. Charge centroid of a XV-cluster:

Track segment finding in CGEM-IT

- Parameterization of the track segment
- $\delta \phi_{21} = \phi_1 \phi_2$ vs $\delta \phi_{23} = \phi_3 \phi_2$
- $\delta Z_{23} = Z_3 Z_2 \text{ vs } \delta Z_{21} = Z_1 Z_2$
- Regions covering $\pm 3\sigma$ of the 2D distributions to find segments candidates

50

100

19

CGEM track segment fitting

- Track segment in CGEM-IT is fitted to a helix model with 5 parameters with Least Square Method (MINUIT)
- ➢ Residual distributions of the five parameters (taking µ with pt~0.8GeV/c as an example) => Results are reasonable and unbiased

Matching of the tracks between CGEM-IT and Outer-DC

> Calibrate the resolution of the residual between CGEM & ODC track parameters

- > $\chi^2 = (H_{CGEM} H_{ODC})^2 / \sigma_c^2$ is calculated between track segments in CGEM-IT and Outer-DC to valuate the consistency quantitatively
- > Proper matching criteria are chosen ($\chi^2 < 30 \sim 100$)
- > Distinguish with ϕ_0 , κ , tan λ if multiple matching candidates
- > efficiency ~99.9% with $p_T > 0.2 \text{ GeV/c}$

Efficiency for track segment finding and matching

Efficiency for track segment finding/fitting with CGEM-IT >99.8%

> Relative efficiency for track matching >99% (~100% with p_T >0.2GeV/c)

Global track finding with Hough transform

- Motivation: increase the track finding efficiency (especially for low momentum tracks)
- Global: directly use both clusters in CGEM and hits in ODC to find track candidates

Please see Ye/Jin's talk

image space \rightarrow parameter space patterns recognition \rightarrow intersection (peaks) finding

Tracking fitting with Kalman filter

- Kalman filter (linear quadratic estimation) estimates information using a series of measurements over time with random noise.
- The Kalman-Filter-based track fitting package for MDC is extended to be able to process CGEM clusters and MDC hits
 - Geometry and material description of CGEM
 - Calculation of the CGEM cluster predictions
 - Update of the track parameter with CGEM clusters

Resolutions after Kalman Filter (single muon)

First test with CgemBoss665b for single track

Efficiency for good reconstructed tracks (dr<1cm, |dz|<10cm) Without global track finding using Hough transform

Summary and plan

A good progress in simulation and tracking software

- A Geant-4 based simulation software has been developed and a preliminary digitization model is implemented
- Tracking software can work and the results are reasonable

Plan

- Calibration and alignment
- Global tracking with Hough transformation
- Micro-TPC mode reconstruction
- Background and noise simulation
- Full digitization

