2018中国物理学会高能物理分会学术年会

The study of semileptonic decay processes within LCSR in B-factory and searching for NP

Hai-Bing Fu (付海冰)

Guizhou Minzu University

In Cooperation with

Long Zeng, Rong Lv, Xie Yang, Zhan Sun, Sheng-Quan Wang

• Xing-Gang Wu, Wei Cheng, Rui-Yu Zhou

Tao Zhong, Yi Zhang,

- I. Introduction
- II. LCSR with chiral correlator
- III. SVZ sum rule within BFT
- IV. Summary

I. Introduction

I. Introduction

Flavor Physics

- 1. Rare FCNC and angular analyses
- 2. B(D) decay property and CP violation
- 3. Spectroscopy and exotic states
- 4. Hadron production and polarization

B/D factory LHCb run-II ATLAS CMS Belle-II BESIII

1. B(D) decay properties and CP violation

Pure leptonic and semileptonic B(D) decay

- Decay constant
- Transition form factors

.....

- CKM matrix element
- Decay width and anomalous

 $U = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{tb} & V_{ts} & V_{tb} \end{pmatrix}$

I. Introduction-Motivation

JHEP 1708 (2017) 055

Test of lepton universality with $B^0 o K^{*0} \ell^+ \ell^-$ decays

Table 1: Recent SM predictions for $R_{K^{*0}}$.

q^2 range $\left[\mathrm{GeV}^2/c^4\right]$	R	$SM_{K^{*0}}$	Referen	nces
	0.906	± 0.028	BIP	[26]
	0.922	± 0.022	CDHMV	[27-29]
[0.045, 1.1]	0.919	$^+$ 0.004 - 0.003	EOS	[30, 31]
	0.925	± 0.004	flav.io	[32-34]
	0.920	+ 0.007 - 0.006	JC	[35]
	1.000	± 0.010	BIP	[26]
	1.000	± 0.006	CDHMV	[27-29]
[1.1, 6.0]	0.9968	+ 0.0005 - 0.0004	EOS	[30, 31]
	0.9964	± 0.005	flav.io	[32-34]
	0.996	± 0.002	JC	[35]

.1.

The LHCb collaboration

E-mail: simone.bifani@cern.ch

ABSTRACT: A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^0 \to K^{*0}\mu^+\mu^-$ and $B^0 \to K^{*0}e^+e^-$ decays, $R_{K^{*0}}$, is presented. The K^{*0} meson is reconstructed in the final state $K^+\pi^-$, which is required to have an invariant mass within $100 \text{ MeV}/c^2$ of the known $K^*(892)^0$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3 fb^{-1} , collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ratio is measured in two regions of the dilepton invariant mass squared, q^2 , to be

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \ \text{GeV}^2/c^4 \\ 0.69 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \ \text{GeV}^2/c^4 \end{cases}$$

PHYSICAL REVIEW LETTERS 120, 121801 (2018)

Measurement of the Ratio of Branching Fractions $\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})/\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})$

R. Aaij *et al.*^{*} (LHCb Collaboration)

(Received 16 November 2017; revised manuscript received 19 January 2018; published 23 March 2018; corrected 4 April 2018)

 $\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$ $= 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst}).$

TABLE I. Systematic uncertainties in the determination of $\mathcal{R}(J/\psi)$.

Source of uncertainty	Size ($\times 10^{-2}$
Finite simulation size	8.0
$B_c^+ \to J/\psi$ form factors	12.1
$B_c^+ \to \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Mis-ID background strategy	5.6
combinatorial background cocktail	4.5
combinatorial J/ψ background scaling	0.9
$B_c^+ \rightarrow J/\psi H_c X$ contribution	3.6
$\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
$\mathcal{B}(\tau^+ o \mu^+ u_\mu \bar{ u}_\tau)$	0.2
Systematic uncertainty	17.7
Statistical uncertainty	17.3

- 1. Large discrepancy with experimental data
- 2. Main uncertainty is form factor
- 3. 3-4 times for QCDSR to the experiment

I. Introduction-Motivation

BESIII D+→Se+v型半轻衰变的首次观测

Explore the nontrivial internal structure of light mesons, arXiv:1803.02166 with clean semileptonic D/Ds decay without final state interactions.

II. LCSR with chiral correlator

	Twist-2	Twist-3	Twist-4
δ^0	$\phi_{2;V}^{\perp}$	/	/
δ^1	$\phi_{2;V}^{\parallel}$	$\phi_{3;V}^{\perp},\psi_{3;V}^{\perp},\phi_{3;V}^{\parallel},\widetilde{\phi}_{3;V}^{\parallel}$	/
δ^2	/	$\phi^{\parallel}_{3;V}, \psi^{\parallel}_{3;V}, \Phi^{\perp}_{3;V}$	$\phi_{4;V}^{\perp}, \psi_{4;V}^{\perp}, \Psi_{4;V}^{\perp}, \widetilde{\Psi}_{4;V}^{\perp}$
δ^3	/	/	$\phi^{\parallel}_{4;V}$, $\psi^{\parallel}_{4;V}$

Axial current

 $\delta \simeq m_V/m_h$

 $\Pi_{\mu}(p,q) = i \int d^4 x e^{iq \cdot x} \langle V(p,\lambda) | \mathrm{T} \{ \bar{q}_1(x) \gamma_{\mu}(1-\gamma_5) b(x), i\bar{b}(x) \gamma_5 q_2(x) \} | 0 \rangle$ $\delta^0, \delta^1, \delta^2, \delta^3 \text{ chiral odd and even DAs}$

Right-handed current

 $\Pi_{\mu}(p,q) = i \int d^4 x e^{iq \cdot x} \langle V(p,\lambda) | \mathrm{T}\left\{ \bar{q}_1(x) \gamma_{\mu}(1-\gamma_5) b(x), i\bar{b}(x)(1+\gamma_5) q_2(x) \right\} | 0 \rangle \qquad \phi_{2;\mathrm{V}}^{\perp}$

 δ^0, δ^2 chiral odd DAs

Left-handed current

Matrix element	TFFs	Relevant $decay(s)$
$\langle V ar q \gamma^\mu b B angle$	V	$B \to (\rho/\omega)\ell\nu_\ell$
$\langle V ar{q} \gamma^\mu \gamma^5 b B angle$	A_0, A_1, A_2	$\int B \to K^* \ell^+ \ell^-$
$\langle V \bar{q} \sigma^{\mu u} q_{ u} b B angle$	T_1	$\int B \to K^* \gamma$
$\langle V \bar{q} \sigma^{\mu u} \gamma^5 q_{ u} b B \rangle$	T_2, T_3	$\int B \to K^* \ell^+ \ell^-$

2. Definition of TFFs

$$\langle K^*(p,\lambda) | \bar{s}\gamma_{\mu}(1-\gamma_5)b | B(p+q) \rangle = -ie_{\mu}^{*(\lambda)}(m_B + m_{K^*})A_1(q^2) + i(e^{*(\lambda)} \cdot q) \frac{(2p+q)_{\mu}}{m_B + m_{K^*}}A_2(q^2) + iq_{\mu}(e^{*(\lambda)} \cdot q) \frac{2m_{K^*}}{q^2} \left[A_3(q^2) - A_0(q^2) \right] + \epsilon_{\mu\nu\alpha\beta}e^{*(\lambda)\nu}q^{\alpha}p^{\beta} \frac{2V(q^2)}{m_B + m_{K^*}}, \\ \langle K^*(p,\lambda) | \bar{s}\sigma_{\mu\nu}q^{\nu}(1+\gamma_5)b | B(p+q) \rangle = 2i\epsilon_{\mu\nu\alpha\beta}e^{*(\lambda)\nu}q^{\alpha}p^{\beta}T_1(q^2) + e_{\mu}^{*(\lambda)}(m_B^2 - m_{K^*}^2)T_2(q^2) \\ - (2p+q)_{\mu}(e^{*(\lambda)} \cdot q)\widetilde{T}_3(q^2) + q_{\mu}(e^{*(\lambda)} \cdot q)T_3(q^2),$$

3. Chiral current correlator

$$\Pi_{\mu}^{I}(p,q) = i \int d^{4} x e^{iq \cdot x} \langle K^{*}(p,\lambda) | T\{\bar{s}(x)\gamma_{\mu}(1-\gamma_{5})b(x), im_{b}\bar{b}(0)(1+\gamma_{5})q_{1}(0)\} | 0 \rangle$$

$$\Pi_{\mu}^{II}(p,q) = -i \int d^{4} x e^{iq \cdot x} \langle K^{*}(p,\lambda) | T\{\bar{s}(x)\sigma_{\mu\nu}q^{\nu}(1+\gamma_{5})b(x), im_{b}\bar{b}(0)(1+\gamma_{5})q_{1}(0)\} | 0 \rangle$$
 9/25

II. LCSR with chiral correlator — $B \rightarrow K^*$ TFFs

$$f_{B}A_{1}(q^{2})e^{-m_{B}^{2}/M^{2}} = \frac{m_{b}m_{K^{*}}^{2}f_{K^{*}}}{m_{B}^{2}(m_{B}+m_{K^{*}})} \left\{ \int_{0}^{1} \frac{du}{u}e^{-s(u)/M^{2}} \left\{ \frac{\mathcal{C}}{um_{K^{*}}^{2}}\Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u,\mu) + \Theta(c(u,s_{0}))\psi_{3;K^{*}}^{\parallel}(u) - \frac{1}{4} \right. \\ \left. \times \left[\frac{m_{b}^{2}\mathcal{C}}{u^{3}M^{4}} \widetilde{\widetilde{\Theta}}(c(u,s_{0})) + \frac{\mathcal{C}-2m_{b}^{2}}{u^{2}M^{2}}\widetilde{\Theta}(c(u,s_{0})) - \frac{1}{u}\Theta(c(u,s_{0})) \right] \phi_{4;K^{*}}(u) - 2 \left[\frac{\mathcal{C}}{u^{2}M^{2}}\widetilde{\Theta}(c(u,s_{0})) - \frac{1}{u}\Theta(c(u,s_{0})) \right] \\ \left. \times I_{L}(u) - \left[\frac{2m_{b}^{2}}{uM^{2}}\widetilde{\Theta}(c(u,s_{0})) + \Theta(c(u,s_{0})) \right] H_{3}(u) \right\} + \int \mathcal{D}\alpha_{i} \int_{0}^{1} dv e^{-s(X)/M^{2}}\Theta(c(X,s_{0})) \left[\frac{\mathcal{C}}{2X^{3}M^{2}} - \frac{1}{2X^{2}} \right] \\ \left. \times \left[(4v-1)\Psi_{4;K^{*}}^{\perp}(\underline{\alpha}) - \widetilde{\Psi}_{4;K^{*}}^{\perp}(\underline{\alpha}) \right] \right\}$$

$$(19)$$

$$\begin{aligned} f_{B}A_{2}(q^{2})e^{-m_{B}^{2}/M^{2}} &= \frac{m_{b}(m_{B}+m_{K^{*}})m_{K^{*}}^{2}f_{K^{*}}^{\perp}}{m_{B}^{2}} \left\{ \int_{0}^{1} \frac{du}{u}e^{-s(u)/M^{2}} \left\{ \frac{1}{m_{K^{*}}^{2}}\Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u,\mu) - \frac{1}{M^{2}}\widetilde{\Theta}(c(u,s_{0}))\phi_{3;K^{*}}^{\parallel}(u) \right. \\ &\left. - \frac{1}{4} \left[\frac{m_{b}^{2}}{u^{2}M^{4}}\widetilde{\widetilde{\Theta}}(c(u,s_{0})) + \frac{1}{uM^{2}}\widetilde{\Theta}(c(u,s_{0})) \right] \phi_{4;K^{*}}^{\perp}(u) + 2 \left[\frac{\mathcal{C}-2m_{b}^{2}}{u^{2}M^{4}}\widetilde{\widetilde{\Theta}}(c(u,s_{0})) - \frac{1}{uM^{2}}\widetilde{\Theta}(c(u,s_{0})) \right] I_{L}(u) \\ &\left. - \frac{1}{M^{2}}\widetilde{\Theta}(c(u,s_{0}))H_{3}(u) \right\} + \int \mathcal{D}\alpha_{i} \int_{0}^{1} dv e^{-s(X)/M^{2}} \frac{1}{2X^{2}M^{2}}\Theta(c(X,s_{0})) \left[(4v-1)\Psi_{4;K^{*}}^{\perp}(\underline{\alpha}) - \widetilde{\Psi}_{4;K^{*}}^{\perp}(\underline{\alpha}) + 4v\Phi_{3;K^{*}}^{\perp}(\underline{\alpha}) \right] \right\} \end{aligned} \tag{20}$$

$$\left. + 4v\Phi_{3;K^{*}}^{\perp}(\underline{\alpha}) \right] \right\} \tag{20}$$

$$\left. f_{B}V(q^{2})e^{-m_{B}^{2}/M^{2}} = \frac{m_{b}(m_{B}+m_{K^{*}})f_{K^{*}}^{\perp}}{m_{B}^{2}} \int_{0}^{1} \frac{du}{u}e^{-s(u)/M^{2}} \left\{ \Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u,\mu) - \left[\frac{m_{b}^{2}}{u^{2}M^{4}}\widetilde{\widetilde{\Theta}}(c(u,s_{0})) + \frac{1}{uM^{2}} \right] \right\} \tag{21}$$

II. LCSR with chiral correlator — $B \rightarrow K^*$ TFFs

$$\begin{split} T_{1}(q^{2}) &= \frac{m_{b}^{2}m_{K^{*}}^{2}f_{K^{*}}^{\perp}}{m_{B}^{2}f_{B}} \Biggl\{ \int_{0}^{1} \frac{du}{u} e^{\frac{m_{b}^{2}-s(u)}{M^{2}}} \Biggl\{ \frac{1}{m_{K^{*}}^{2}} \Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u,\mu) - \frac{m_{b}^{2}}{4u^{2}M^{4}} \tilde{\Theta}(c(u,s_{0}))\phi_{4;K^{*}}^{\perp}(u) - \frac{2}{uM^{2}} \\ &\times \Theta(c(u,s_{0}))I_{L}(u) - \frac{1}{M^{2}} \Theta(c(u,s_{0}))H_{3}(u) + \int D\alpha_{i}\int_{0}^{1} dv e^{\frac{m_{b}^{2}-s(x)}{M^{2}}} \frac{5}{4X^{2}M^{2}} \Theta(c(X,s_{0}))\Psi_{4;K^{*}}^{\perp}(\underline{\alpha}) \Biggr\} \\ T_{2}(q^{2}) &= \frac{m_{b}^{2}f_{K}^{\perp}m_{K^{*}}^{2}}{m_{B}^{2}f_{B}} \int_{0}^{1} \frac{du}{u} e^{\frac{m_{b}^{2}-s(u)}{M^{2}}} \Biggl\{ \frac{1-\mathcal{H}}{m_{K^{*}}^{2}} \Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u,\mu) - \frac{m_{b}^{2}}{4u^{2}M^{4}} (1-\mathcal{H})\tilde{\Theta}(c(u,s_{0}))\phi_{4;K^{*}}^{\perp}(u) \\ &- \frac{2(1-\mathcal{H})}{uM^{2}}\tilde{\Theta}(c(u,s_{0}))I_{L}(u) - \frac{1}{M^{2}} \Biggl[1+ \Biggl(\frac{2}{u}-1 \Biggr)\mathcal{H} \Biggr] \tilde{\Theta}(c(u,s_{0}))H_{3}(u) \Biggr\} \\ \tilde{T}_{3}(q^{2}) &= \frac{m_{b}^{2}f_{K^{*}}m_{K^{*}}^{2}}{m_{B}^{2}f_{B}} \int_{0}^{1} \frac{du}{u} e^{\frac{m_{b}^{2}-s(u)}{M^{2}}} \Biggl\{ \frac{1}{m_{K^{*}}^{2}} \Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u) - \frac{m_{b}^{2}}{4u^{2}M^{4}} \tilde{\Theta}(c(u,s_{0}))\phi_{4;K^{*}}^{\perp}(u) - 2\Biggl[\frac{1}{uM^{2}} \\ &\times \tilde{\Theta}(c(u,s_{0})) + \frac{2q^{2}}{u^{2}M^{4}} \tilde{\Theta}(c(u,s_{0}))\Biggr] \Biggr] I_{L}(u) - \frac{1}{M^{2}} \tilde{\Theta}(c(u,s_{0}))H_{3}(u) \Biggr\} \\ T_{3}(q^{2}) &= \frac{m_{b}^{2}f_{K^{*}}m_{K^{*}}^{2}}{m_{B}^{2}f_{B}} \int_{0}^{1} \frac{du}{u} e^{\frac{m_{b}^{2}-s(u)}{M^{2}}} \Biggl\{ \frac{1}{m_{K^{*}}^{2}} \Theta(c(u,s_{0}))\phi_{2;K^{*}}^{\perp}(u) - \frac{m_{b}^{2}}{4u^{2}M^{4}} \tilde{\Theta}(c(u,s_{0}))\phi_{4;K^{*}}^{\perp}(u) - 2\Biggl[\frac{1}{uM^{2}} \\ &\times \tilde{\Theta}(c(u,s_{0})) + \frac{2q^{2}}{u^{2}M^{4}} \tilde{\Theta}(c(u,s_{0}))\Biggr] \Biggr\} \Biggr\}$$

II. LCSR with chiral correlator —— $B \rightarrow K^* TFFs$

Ali A, Lunghi E, Greub C and Hiller G 2002 Improved model independent analysis of semileptonic and radiative rare *B* decays *Phys. Rev.* D **66** 034002

II. LCSR with chiral correlator — $B \rightarrow K^* \mu^+ \mu^-$ Asymmetry

Forward-Backward asymmetry

$$\frac{dA_{\rm FB}}{dq^2} \equiv \frac{1}{d\Gamma/dq^2} \left(\int_0^1 d(\cos\theta) \frac{d^2\Gamma[B \to K^*\ell^+\ell^-]}{dq^2d\cos\theta} - \int_{-1}^0 d(\cos\theta) \frac{d^2\Gamma[B \to K^*\ell^+\ell^-]}{dq^2d\cos\theta} \right)_{(1)}$$

Isospin asymmetry

$$\frac{dA_I}{dq^2} \equiv \frac{d\Gamma[B^0 \to K^{*0}\ell^+\ell^-]}{d\Gamma[B^0 \to K^{*0}\ell^+\ell^-]/dq^2 + d\Gamma[B^\pm \to K^{*\pm}\ell^+\ell^-]/dq^2} d\Gamma[B^0 \to K^{*0}\ell^+\ell^-]/dq^2 + d\Gamma[B^\pm \to K^{*\pm}\ell^+\ell^-]/dq^2 d\Gamma[B^\pm \to$$

→ Decay Width

- ightarrow TFFs $\xi_{\perp,||}(q^2)$
- → LCSR with Chiral correlator

→ WH model for K* meson twist-2 LCDA

	$\xi_{\parallel}(0)$	$\xi_{\perp}(0)$
Our prediction	$0.129\substack{+0.006\\-0.009}$	$0.351\substack{+0.036\\-0.035}$
LCSR1 [9]	0.126(11)	0.333(28)
LCSR2 [32]	0.118(8)	0.266(32)
AdS/QCD [20]	0.076	0.245
Empirical estimate [5]	0.16(3)	0.26(6)

TABLE I: The $B \to K^*$ SFFs at the large recoil region ξ_A , where the errors are squared average of all mentioned error sources. As a comparison, the results derived by light-cone sum rule [9, 32], Ad-S/QCD [20] predictions and empirical estimate [5] are also presented.

II. LCSR with chiral correlator — $B \rightarrow K^* \mu^+ \mu^-$ Asymmetry

 $B \rightarrow K^* \nu \overline{\nu}$ Branching Ratio and F_L

	$\mathcal{B} imes 10^6$	$\langle F_L \rangle$
SM	$7.60^{+2.16}_{-1.70}$	$0.49^{+0.09}_{-0.10}$
SM + GFV-I	$5.92^{+1.68}_{-1.33}$	
SM + GFV-II	$9.72^{+2.76}_{-2.18}$	
Belle [49]	<18	
ABSW [47] (SM)	$6.8^{+1.0}_{-1.1}$	0.54(1)
ABSW [47] (GFV-I)	5.3	
ABSW [47] (GFV-II)	8.7	
NWA(SM) [50]	9.49(101)	0.49(4)

By Suppressing the value of threshold S_0 , the contribution from the added scalar state can be highly reduced or eliminated.

	$A_{1}(0)$	$A_{2}(0)$	V(0)	$T_1(0)[T_2(0),\widetilde{T}_3(0)]$	$T_{3}(0)$
$\mathrm{LCSR}\text{-}\mathcal{R}$	$0.310\substack{+0.030\\-0.037}$	$0.260\substack{+0.055\\-0.058}$	$0.332\substack{+0.051\\-0.051}$	$0.254\substack{+0.046\\-0.049}$	$0.152\substack{+0.039\\-0.043}$
$\mathrm{LCSR} extsf{-}\mathcal{U}$	$0.308\substack{+0.032\\-0.028}$	$0.257\substack{+0.028\\-0.026}$	$0.307\substack{+0.024\\-0.023}$	$0.251\substack{+0.028\\-0.024}$	$0.145\substack{+0.020\\-0.020}$
LCSR [38]	$0.25\substack{+0.16 \\ -0.10}$	$0.23\substack{+0.19 \\ -0.10}$	$0.36\substack{+0.23\\-0.12}$	$0.31\substack{+0.18 \\ -0.10}$	$0.22\substack{+0.17\\-0.10}$
BZ [12]	0.292 ± 0.028	0.259 ± 0.027	0.411 ± 0.033	0.333 ± 0.028	0.202 ± 0.018
AdS [36]	0.249	0.235	0.277	0.255	0.155

FIG. 4. The extrapolated $B \to K^*$ tensor TFFs $T_{1,2,3}(q^2)$. The left and right figures stand for LCSR with the usual and right current, respectively. The solid lines are central values and the shaded bands are their errors. As a comparison, the AdS/QCD [36] and the lattice QCD [41] and predictions are presented.

II. LCSR with chiral correlator —— The equivalence of LCSR and chiral LCSR

III. SVZ sum rule within BFT

- Background Field Theory (BFT)
- Equation of the motion

BFT)
Gluon field
$$\mathcal{A}^{A}_{\mu}(x) \rightarrow \mathcal{A}^{A}_{\mu}(x) + \phi^{A}_{\mu}(x)$$

Quark field $\psi(x) \rightarrow \psi(x) + \eta(x)$.
 $(i D - m) \psi(x) = 0,$
 $\widetilde{D}^{AB}_{\mu} G^{B\nu\mu}(x) = g_s \overline{\psi}(x) \gamma^{\nu} T^{A} \psi(x),$

- Fundamental and adjoint representations of the gauge covariant derivatives
- Quark propagator (up to 6-dimension)

$$D_{\mu} = \partial_{\mu} - ig_s T^A \mathcal{A}^A_{\mu}(x)$$

$$\widetilde{D}^{AB}_{\mu} = \delta^{AB} - g_s f^{ABC} \mathcal{A}^C_{\mu}(x)$$

,

$$S_F(x,0) = S_F^0(x,0) + S_F^2(x,0) + S_F^3(x,0) + \sum_{i=1}^2 S_F^{4(i)}(x,0) + \sum_{i=1}^3 S_F^{5(i)}(x,0) + \sum_{i=1}^5 S_F^{6(i)}(x,0),$$

Vertex operator

$$z \cdot B = -2iz \cdot \mathcal{A}$$

$$= -ix^{\mu}z^{\nu}G_{\mu\nu} - \frac{2i}{3}x^{\mu}x^{\rho}z^{\nu}G_{\mu\nu;\rho}$$

$$-\frac{i}{4}x^{\mu}x^{\rho}x^{\sigma}z^{\nu}G_{\mu\nu;\rho\sigma} - \frac{i}{15}x^{\mu}x^{\rho}x^{\sigma}x^{\lambda}z^{\nu}G_{\mu\nu;\rho\sigma\lambda}$$

$$-\frac{i}{72}x^{\mu}x^{\rho}x^{\sigma}x^{\lambda}x^{\tau}z^{\nu}G_{\mu\nu;\rho\sigma\lambda\tau} + \cdots$$

$$17/25$$

III. SVZ sum rule within BFT

$$S_{F}^{d\leqslant3}(x,0) = i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \left\{ -\frac{m+\not p}{m^{2}-p^{2}} + \frac{\gamma^{\nu}(\not p-m)\gamma^{\mu}}{(m^{2}-p^{2})^{2}} b_{0\nu\mu} - i \left[2\frac{\gamma^{\nu}(\not p-m)p^{\rho}}{(m^{2}-p^{2})^{3}} + \frac{g^{\nu\rho}}{(m^{2}-p^{2})^{2}} \right] \gamma^{\mu} b_{1\nu\mu|\rho} \right\}$$

$$S_{F}^{4(1)}(x,0) = i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \left\{ \left[\frac{1}{4} \left(\frac{\gamma^{\mu}(m-\not p)}{(m^{2}-p^{2})^{3}} - 2\frac{p^{\mu}}{(m^{2}-p^{2})^{3}} \right) \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} + \frac{1}{2} \left(\frac{(m+\not p)\gamma^{\mu}}{(m^{2}-p^{2})^{3}} g^{\nu\sigma} + 4\frac{\gamma^{\mu}(m-\not p)}{(m^{2}-p^{2})^{4}} p^{\nu} p^{\sigma} \right) \gamma^{\rho} \right] G_{\mu\nu} G_{\rho\sigma} \right\}$$

$$S_{F}^{4(2)}(x,0) = i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \left\{ \frac{i}{4} \left[\frac{g^{\{\mu\rho\,\gamma\,\sigma\}}(m-\not p)}{(m^{2}-p^{2})^{3}} - 2\frac{g^{\{\mu\rho\,p\sigma\}}}{(m^{2}-p^{2})^{3}} + 4\frac{\gamma^{\{\mu\,p\rho\,p\sigma\}}(m-\not p)}{(m^{2}-p^{2})^{4}} \right] \gamma^{\nu} G_{\mu\nu;\rho\sigma} \right\}$$

$$\begin{split} S_{F}^{5(2)}(x,0) &= i \int \frac{d^{2}p}{(2\pi)^{4}} e^{-ip \cdot x} \left\{ \frac{2i}{3} \left[\left(\frac{g^{\mu \prime \prime}}{(m^{2}-p^{2})^{3}} + \frac{6p^{\mu}p^{\prime}}{(m^{2}-p^{2})^{4}} \right) \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \right. \\ &\left. - 2 \left(\frac{\gamma^{\mu}(m-\not{p})}{(m^{2}-p^{2})^{4}} g^{\{\nu\sigma}p^{\lambda\}} + 2 \frac{p^{\mu}g^{\{\nu\sigma}p^{\lambda\}}}{(m^{2}-p^{2})^{4}} + 6 \frac{\gamma^{\mu}(m-\not{p})}{(m^{2}-p^{2})^{5}} p^{\nu}p^{\sigma}p^{\lambda} \right) \gamma^{\rho} \right] G_{\mu\nu;\lambda}G_{\rho\sigma} \right\}, \\ S_{F}^{5(3)}(x,0) &= i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \left\{ \frac{4}{15} \left[\frac{g^{\{\rho\sigma}p^{\lambda}\gamma^{\mu\}}(m-\not{p})}{(m^{2}-p^{2})^{4}} - 2 \frac{g^{\{\rho\sigma}p^{\lambda}p^{\mu\}}}{(m^{2}-p^{2})^{4}} + 6 \frac{\gamma^{\{\mu}p^{\rho}p^{\sigma}p^{\lambda\}}(m-\not{p})}{(m^{2}-p^{2})^{5}} \right] \right\} \end{split}$$

$$\begin{split} S_{F}^{6(2)}(x,0) &= i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \left(-\frac{1}{8} \right) \left\{ \left[3 \frac{\gamma^{\mu}(m-\not p)\gamma^{\nu}}{(m^{2}-p^{2})^{4}} g^{\{\lambda\tau}\gamma^{\rho\}} + 16 \frac{\gamma^{\mu}(m-\not p)\gamma^{\nu}}{(m^{2}-p^{2})^{5}} \gamma^{\{\rho}p^{\lambda}p^{\tau\}} \right. \\ &\left. -4 \frac{\gamma^{\nu}}{(m^{2}-p^{2})^{4}} g^{\mu\{\lambda}p^{\tau}\gamma^{\rho\}} \right] \gamma^{\sigma} + 4 \left[\frac{m+\not p}{(m^{2}-p^{2})^{4}} g^{(\nu\sigma\tau\lambda)} + 6 \frac{m+\not p}{(m^{2}-p^{2})^{5}} g^{\{\nu\sigma}p^{\tau}p^{\lambda\}} \right. \\ &\left. +48 \frac{m+\not p}{(m^{2}-p^{2})^{6}} p^{\nu}p^{\sigma}p^{\tau}p^{\lambda} \right] \gamma^{\mu}\gamma^{\rho} \right\} G_{\mu\nu}G_{\rho\sigma;\lambda\tau}, \end{split}$$

Phys.Rev. D90 (2014) 016004 T.Zhong, X.G.Wu, Z.G.Wang, T.Huang, <u>H.B.Fu</u>, H.Y.Han

•••

III. SVZ sum rule within BFT— rho meson longitudinal twist-2 DA

$$\phi_{2;\rho}^{\parallel}(x,\mu) = 6x(1-x)\left(1 + \sum_{n} C_{n}^{3/2}(\xi) \times a_{n;\rho}^{\parallel}(\mu)\right),$$

$$a_{2;\rho}^{\parallel} = \frac{7}{12} (5\langle \xi_{2;\rho}^{\parallel} \rangle - 1),$$

$$a_{4;\rho}^{\parallel} = -\frac{11}{24} (14\langle \xi_{2;\rho}^{\parallel} \rangle - 21\langle \xi_{4;\rho}^{\parallel} \rangle - 1),$$

$$a_{6;\rho}^{\parallel} = \frac{5}{64} (135\langle \xi_{2;\rho}^{\parallel} \rangle - 495\langle \xi_{4;\rho}^{\parallel} \rangle + 429\langle \xi_{6;\rho}^{\parallel} \rangle - 5).$$

Correlation function

$$\Pi_{\rho}^{\parallel(n,0)}(z,q) = i \int d^4x e^{iq \cdot x} \langle 0|T\{J_n(x)J_0^{\dagger}(0)\}|0\rangle$$
$$= (z \cdot q)^{n+2} I^{\parallel(n,0)}(q^2)$$
$$J_n(x) = \bar{d}(x) \not z (iz \cdot \overleftrightarrow{D})^n u(x) \ J_0^{\dagger}(0) = \bar{u}(0) \not z d(0)$$

$$\begin{split} \langle \xi_{n;\rho}^{\parallel} \rangle &= \frac{M^2}{f_{\rho}^2} e^{m_{\rho}^2/M^2} \left\{ \frac{3}{4\pi^2(n+1)(n+3)} \left(1 + \frac{\alpha_s}{\pi} A_n' \right) (1 - e^{-s_{\rho}/M^2}) + \sum_{q=u,d} \left(\frac{m_q \langle \overline{q}q \rangle}{M^4} - \frac{8n+1}{18} \frac{m_q \langle g_s \overline{q}\sigma TGq \rangle}{M^6} \right) \\ &+ \frac{4n+2}{81} \frac{\langle g_s \overline{q}q \rangle^2}{M^6} \right) + \frac{1+n\theta(n-2)}{12\pi(n+1)} \frac{\langle \alpha_s G^2 \rangle}{M^4} + \frac{1}{16\pi} \frac{\langle g_s^3 f G^3 \rangle}{M^6} \left\{ \frac{8\delta^{n0} + 405n + 192}{36} \ln \frac{M^2}{\mu^2} - \frac{16\delta^{n0} + 810n + 363}{72} \right. \\ &\times \gamma_E + \frac{7}{24} \psi(n+1) + \frac{8\delta^{n0} + 405n + 826}{72} + \theta(n-2) \left[\frac{16 - 22n}{72} \ln \frac{M^2}{\mu^2} - \frac{788n + 421}{72} \psi(n+1) - \frac{766n + 437}{72} \gamma_E \right] \\ &- \frac{68n^2 - 37n - 11}{144n} + \sum_{k=0}^{n-2} (-1)^k \frac{1}{144} \left(\frac{3(135k + 128)}{n-k} + \frac{383k + 399}{k-n+1} - \frac{106kn - 410k + 617n - 415}{(k+1)(k+2)} + 106 \right) \right] \right\} \bigg\}, \end{split}$$

III. SVZ sum rule within BFT— rho meson longitudinal twist-2 DA

III. SVZ sum rule within BFT— J/ ψ longitudinal twist-2 DA

Propagator and vertex operator contain m_c which are more complex than ρ -meson !!

$$\langle \xi_{n;J/\psi}^{\parallel} \rangle = \frac{e^{m_{J/\psi}^{2}/M^{2}}}{f_{J/\psi}^{\parallel2}} \left\{ \frac{3}{8\pi^{2}(n+1)(n+3)} \left(1 + \frac{\alpha_{s}}{\pi} A_{n}^{\prime} \right) \int_{t_{\min}}^{s_{J/\psi}} ds e^{-s/M^{2}} \left[v^{n+1} \frac{2(n+1)m_{c}^{2} + s}{s} - (v \to -v) \right] + \frac{\langle \alpha_{s} G^{2} \rangle}{6\pi M^{2}} \right. \\ \left. \times \int_{0}^{1} dx \, e^{-\frac{m_{c}^{2}}{x\bar{x}M^{2}}} \frac{\xi^{n-2}}{x^{2}\bar{x}^{2}} \left[n(n-1)x^{3}\bar{x}^{3} + \frac{\xi^{2}}{2} \left(1 - \frac{m_{c}^{2}(x^{3} + \bar{x}^{3})}{x^{3}\bar{x}^{3}M^{2}} \right) \right] + \frac{\langle g_{s}^{3}fG^{3} \rangle}{16\pi^{2}M^{4}} \int_{0}^{1} dx \, e^{-\frac{m_{c}^{2}}{x\bar{x}M^{2}}} \frac{\xi^{n-2}}{2} \right. \\ \left. \times \left\{ \left[-\xi^{2} \left(\frac{69 + 2n(11 + 64x\bar{x})}{72x\bar{x}} + \frac{45(1 - 3x\bar{x})}{8x^{2}\bar{x}^{2}} \right) - \frac{n(n-1)}{9} \left[16 + (n-31)x\bar{x} \right] \right] + \frac{1}{3M^{2}} \left[\xi^{2} \left(\frac{m_{c}^{2}(1 + 2x\bar{x})}{12x^{2}\bar{x}^{2}} - \frac{8nm_{c}^{2}}{3x\bar{x}} - \frac{3m_{c}^{2}(x^{4} + \bar{x}^{4})}{4x^{3}\bar{x}^{3}} \right) + \xi \frac{11nm_{c}^{2}(x^{3} - \bar{x}^{3})}{6x^{2}\bar{x}^{2}} - \frac{n(n-1)m_{c}^{2}}{3} \right] + \xi^{2} \frac{m_{c}^{2}(x^{5} + \bar{x}^{5})}{30M^{4}x^{4}\bar{x}^{4}} \right\} \right\}.$$

III. SVZ sum rule within BFT— J/ ψ longitudinal twist-2 DA

$\langle \xi^{\parallel}_{n;J/\psi} angle$	n = 2	<i>n</i> = 4	<i>n</i> = 6
Our prediction	0.083(12)	0.015(5)	0.003(2)
QCD SR [47]	0.070(7)	0.012(2)	0.0031(8)
BT model [48]	0.086	0.020	0.0066
Cornell model [49]	0.084	0.019	0.0066
NRQCD [50]	0.075(11)	0.010(3)	0.0017(7)

	$A_1(0)$	$A_2(0)$	V(0)
This work	$1.13^{+0.13}_{-0.11}$	$1.20^{+0.14}_{-0.12}$	$1.50^{+0.17}_{-0.15}$
PMC [17]	1.07(52)	1.15(55)	1.47(72)
QCD SR [9]	0.75	1.69	1.69
3PSR [8]	0.63	0.69	1.03
QM [52]	0.68	0.66	0.96

References	$\Re (J/\psi {\ell}^+ u_\ell)$
This work	$0.217^{+0.069}_{-0.057}$
CDF2016 [2]	$0.211 \pm 0.012(\text{st})^{+0.021}_{-0.020}(\text{sy})$
PMC [17]	$0.257^{+0.045}_{-0.034}$
NLO pQCD [12]	$0.235^{+0.088}_{-0.049}$
QCDSR-LCSR [9]	0.068(12)
QCDSR-3PSR [8]	0.084
LO pQCD [7]	$0.036^{+0.005}_{-0.004}$
PM [6]	0.073
BS equation [5]	0.083
CQM-I [4]	$0.053^{+0.003}$
CQM-II [3]	0.068

Phys.Rev. D97 (2018) 074025

H.B.Fu, L.Zeng, W.Cheng, T.Zhong, X.G.Wu

- 1. LCSR with chiral correlator
 - B-K* TFFs, Asymmetry, Equivalence of two LCSR
- 2. SVZSR with BFT
 - $\rho,$ J/ ψ and semileptonic decay

- \succ *B*, *D* → π, *K*, *S*, *V*, *T* at BESIII、 LHCb、 Belle-II
- > NLO correction for semileptonic decay processes
- Heavy baryon decay processes

IV. Summary and Outlook

1	PRD 97 (2018) 074025	H.B.Fu, L.Zeng, W.Cheng, T.Zhong, X.G.Wu
2	PRD 97 (2018) 055037	H.B.Fu, X.G.Wu, W.Cheng, T.Zhong, Z.Sun
3	EPJC 78 (2018) 76	Y.Zhang, T.Zhong, X.G.Wu, K.Li, H.B.Fu, T.Huang
4	PRD 95 (2017) 094023	W.Cheng, X.G.Wu, H.B.Fu
5	PRD 94 (2016) 074004	H.B.Fu, X.G.Wu, W.Cheng, T.Zhong
6	EPJC 76 (2016) 509	T.Zhong, X.G.Wu, K.Li, T.Huang, H.B.Fu
7	JPG 43 (2016) 015002	H.B.Fu, X.G.Wu, Y.Ma, W.Cheng, T.Zhong
8	JPG 42 (2015) 055002	H.B.Fu, X.G.Wu, H.Y.Han, Y.Ma
9	ROPP 78 (2015) 126201	X.G.Wu, Y.Ma, S.Q.Wang, H.B.Fu, H.H.Ma, S.J.Brodsky,
10	PLB 738 (2014) 228	H.B.Fu, X.G.Wu, H.Y.Han, Y.Ma, H.Y.Bi
11	NPB 884 (2014) 172	H.B.Fu, X.G.Wu, H.Y.Han, Y.Ma, T.Zhong
12	PRD 90 (2014) 034004	G.Chen, X.G.Wu, H.B.Fu, H.Y.Han, Z.Sun
13	JHEP 1412 (2014) 018	G.Chen, X.G.Wu, Z.Sun, Y.Ma, H.B.Fu
14	PRD 90 (2014) 016004	T.Zhong, X.G.Wu, Z.G.Wang, T.Huang, H.B.Fu, H.Y.Han
15	PRD 89 (2014) 074020	G.Chen, X.G.Wu, J.W.Zhang, H.Y.Han, H.B.Fu

Thanks for your attention!