

ATLAS 和 CMS 实验 重味物理研究进展

北京大学 王大勇

中国物理学会高能物理分会第十届全国粒子物理学术会议上海 2018.6.22

Dayong Wang

ATLAS and CMS for HF studies

- Flexible triggers
- Large silicon tracker
- Strong magnetic field
- Broad acceptance
- Superb muon systems
- (CMS parameters, ATLAS similar)
 - Three different devices, coverage up to $|\eta| < 2.4$
 - Dimuon mass resolution $\sim 0.6-1.5\%$ (depending on |y|).
 - Fake rate $\leq 0.1\%$ for pi,K; $\leq 0.05\%$ for proton, with very tight ID

• Complementary to LHCb

2018/6/22

全国粒子物理学术会议

- Hadron production and polarization
- Spectroscopy and exotic states
- B decay property and angular analyses
- Disclaims
 - Not exclusive of all due to time limitation
 - No coverage of pA and AA results
 - Selections due to personal bias, esp the speaker is from CMS
 - More results from ATLAS and CMS can be found at:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublic</u> <u>Results</u>
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResul</u>
 <u>tsBPH</u>

Quarkonium production

Prompt J/ψ pair production

Y(1S) pair production@CMS

CMS: JHEP 05(2017) 013

- □ Signal yield: 38+-7
- **D** Significance > 5 σ , first observation
- **\square** The fiducial cross section with |y| < 2.0:

 $\sigma_{\rm fid} = 68.8 \pm 12.7 \, (\text{stat}) \pm 7.4 \, (\text{syst}) \pm 2.8 \, (\mathcal{B}) \, \text{pb}$

The effective cross section: consistent with the range of values from the heavyquarkonium measurements

Measurement of B_c and B⁺ cross sections

- The integrated production cross sections times branching fraction
 - $B_c^+ \rightarrow J/\psi \pi^+: 40.8 \pm 4.7 \text{ (stat)} \pm 2.8 \text{ (syst) pb } [p_T(B_c^+) > 10 \text{ GeV and } |y|(B_c^+) < 1.5]$
 - $B^+ \rightarrow J/\psi K^+$: 5851 ± 37 (stat) ± 446 (syst) pb [p_T(B⁺) > 10 GeV and |y|(B⁺) < 1.5]
- B_c shape in agreement with BCVEGPY, normalization off by ~2.75
- B⁺ measurement consistent with PYTHIA, NLO, and FONLL predictions

B hadron lifetime measurement

- B hadrons lifetimes measured by CMS on 8 TeV pp data
 - Decay modes used:
 - $B^{0} \rightarrow J/\psi K^{*}(892)$ and $B^{0} \rightarrow J/\psi K_{s}$
 - $\Lambda^{0}_{b} \longrightarrow J/\psi \Lambda^{0}$
 - $B_s^0 \longrightarrow J/\psi \varphi(1020)^0$ and $B_s^0 \longrightarrow J/\psi \pi^+\pi^-$
 - $B_c^+ \rightarrow J/\psi \pi^+$

CMS

 $B_c \rightarrow I/\psi \pi$

0.04

arXiv1710.08949

(PDG: 423.6 ± 1.8 μm)

 $(PDG: -0.002 \pm 0.010)$

Accepted by EPJC

0.06

0.02

R/R "

10-3

Channel	CMS result [µm]	PDG [µm]
$c\tau_{B^0}$	454.1 ± 1.4 (stat) ± 1.7 (syst)	455.7 ± 1.2
$C\tau_{B_s \rightarrow J/\psi \pi \pi}$	502.7 ± 10.2 (stat) ± 3.4 (syst)	482.4 ± 3.0
$c\tau_{B_s \to J/\psi\varphi}$	443.9 ± 2.0 (stat) ± 1.5 (syst)	443.4 ± 3.6
$c\tau_{\Lambda_b}$	442.9 ± 8.2 (stat) ± 2.8 (syst)	440.7 ± 3.0
ct _{Bc}	162.3 ± 7.8 (stat) ± 4.2 (syst) ± 0.1 (B ⁺)	152.0 ± 2.7

- Other observables found from the measured lifetimes:
 - Lifetime of the B_{sL} eigenstate $c\tau_L = 420.4 \pm 6.1$ (stat + syst) μm
 - $\Delta \Gamma_{\rm d} / \Gamma_{\rm d} = 0.034 \pm 0.023 \text{ (stat)} \pm 0.024 \text{ (syst)}$

2018/6/22 全国粒子物理学术会议

19.7 fb⁻¹ (8 TeV)

- Data

0.08

0.1 ct [cm]

Observation of a new B_{s2}^{*} decay

CMS Preliminary 19.6 fb⁻¹ (8 TeV) Using 19.6 fb⁻¹ of 8 TeV data, CMS studied the ∧ 70 60 2 Data excited B_s states $B_{s1}(5830)^{\circ}$ and $B_{s2}^{*}(5840)^{\circ}$ (b) - Fit - Signals in the B^+K^- and in the $B^0K^0_s$ decay modes Candidates / 2 05 05 05 05 -- K $\leftrightarrow \pi$ swap ---- Background First observation of the decay $B_{s2}^* \rightarrow B^0 K_s^0$ First evidence of the decay $B_{s1} \rightarrow B^{*0}K_s^0$ 20 Several related observables measured 10 New for LHCP2018 ! CMS-PAS-BPH-16-003 5.8 5.82 5.84 5.86 5.88 $m_{\mathsf{B}^0\mathsf{K}^0_c}$ [GeV] **B**_{s2} **natural width** (consistent with LHCb and CDF) $B_{s2}^* \rightarrow B^{*0}K_s^0$ $\Gamma(B_{s2}^*) = 1.52 \pm 0.34 \,(stat) \pm 0.30 \,(syst) \,\text{MeV}$ $B_{s2}^* \rightarrow B^0 K_s^0$ $B_{s1} \rightarrow B^{*0}K_s^0$ First measurement of mass difference (**6.3-7** σ) **(3.6-3.9 σ)** between B^{*0} and B^{*+} excited mesons $m_{\rm B^{*0}} - m_{\rm B^{*+}} = 0.91 \pm 0.24 \,({\rm stat}) \pm 0.09 \,({\rm syst}) \pm 0.02 \,({\rm PDG}) \,{\rm MeV}$ **Cross section times branching fraction ratios** $R_{\sigma}^{\pm} = \frac{\sigma(\text{pp} \to B_{\text{s1}} \dots) \times \mathcal{B}(B_{\text{s1}} \to B^{*+}K^{-})}{\sigma(\text{pp} \to B_{\text{s2}}^{*} \dots) \times \mathcal{B}(B_{\text{s2}}^{*} \to B^{+}K^{-})} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)}$ Consistent with LHCb

$$R_{\sigma}^{0} = \frac{\sigma(\text{pp} \rightarrow B_{s1} \dots) \times \mathcal{B}(B_{s1} \rightarrow B^{*0}K_{s}^{0})}{\sigma(\text{pp} \rightarrow B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{s}^{0})} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)}$$
First measurements where the second state of th

1t

Observation of $\chi_{b1,2}(3P)$ mass split

- χ_b(3P) state first discovered by ATLAS (PRL 108 (2012) 152 001), seen also by D0 and LHCb
- Analyzing the full LHC Run 2 dataset (80 fb⁻¹) CMS now observes for the first time the split in the χ_{b1}(3P)-χ_{b2}(3P) doublet and measures the masses of the two states
- $\chi_{b}(3P)$ reconstructed in Y(3S)+ γ mode, with γ converting inside the CMS tracker
- Photon energy scale calibrated with high-yield $\chi_{c1} \rightarrow J/\psi + \gamma$ decays
- Results
 - $M_1 = 10513.42 \pm 0.41(stat) \pm 0.18(syst) \text{ MeV}$
 - $M_2 = 10524.02\pm0.57(stat)\pm0.18(syst) \text{ MeV}$
 - $\Delta M = 10.60 \pm 0.64 (stat) \pm 0.17 (syst) MeV$
- Significantly constrains theoretical predictions, which give mass splits in the range [-2, 18] GeV

Search for $X^+(5568) \rightarrow B_s \pi^+$

- **D0:** a tetraquark candidate X^+ (5568) $\rightarrow B_s \pi$ +
 - Phys. Rev. Lett. 117, 022003 (2016): 5.1sigma
 - DØ Note 6488-CONF: semi-leptonic channel

$$D_X = (8.6 \pm 1.9 \pm 1.4)\%$$

- LHCb/CDF reported non-confirmation results
- ATLAS/CMS: thousands of $B_s \rightarrow J/\psi \phi$ decays to search

ATLAS: $\rho_X < 1.5\% @ 95\%CL$ CMS: $\rho_X < 1.1\% @ 95\%CL$ $\rho_X \equiv \frac{\sigma(pp \rightarrow X(5558) + anything) \times B(X(5558) \rightarrow B_S \pi^{\pm})}{\sigma(pp \rightarrow B_S + anything)} = \frac{N_X}{N_{B_S}} \frac{\varepsilon_{B_S}}{\varepsilon_X}$

Obersvation of excited B_c states

- Significance of the observed signal calculated with toy studies
 - 3.7 in 7TeV and 4.5 in 8TeV
 - Combined significance is 5.2
- Systematic dominated by fitting
- A new state observed at
- Q = 288.3±3.5(stat.)±4.1(syst.) MeV
- Corresponds to a mass of
- 6842 ± 4(stat.) ± 5(syst.) MeV
- LHCb: 2 fb⁻¹ of 8 TeV data, no evidence for any resonance
- Ratio of B_c(2S) to B_c cross section in [™]/₂ the range [0.02, 0.14] @95%CL JHEP (2018) 2018:138

ATLAS observation to be confirmed

Dayong Wang

Helicity study of $\Lambda_b \rightarrow J/\psi \Lambda$

Effective theory: Different processes are sensitive to different operators

$B^0 \rightarrow K^{*0} \ \mu^+ \mu^-$: P₁ and P₅' results

- Fit in seven q^2 bins from 1 to 19 GeV^2 , yielding 1397 signal and 1794 bkg evts
- CMS results are consistent with SM and previous measurements.

LHCb: <i>JHEP 02 (2016) 104</i> Belle: <i>Phys. Rev. Lett. 118, 111801 (2017)</i> SM-DHMV: <i>JHEP01 (2013) 048, JHEP 05 (2013) 137</i>	arxiv: 1710.02846 Phys. Lett. B 781 (2018) 517
Selected as the CMS "joker talk" at Moriond2017	该分析由北大组与Milano, Padova合作完成 参与人: 李林蔚/王大勇 李林蔚做Pre-Approval报告

2018/6/22

$B^0 \rightarrow K^{*0} \ \mu^+ \mu^-$ angular analysis from ATLAS

The measured A_{FB} and F_H show good agreement with the SM predictions within the uncertainty.

No clear indication of new physics beyond the SM could be drawn from present results.

	PAS was published for Moriond2018 conferences		ì	该分析由北大组提出并完成,担任联络人参与人:陈耿/王大勇 王大勇做Pre-Approval报告	-
			P	陈耿 做 Approval报告	
20	18/6/22	全国粒子物理学	术会讨	会议 Dayong Wang 18	3

Global fits: try to be model-indep

"For the first time, the NP hypothesis is preferred over the SM by 5 σ in a general case when NP can enter SM-like operators and their chirally-flipped partners" [1]

"we confirm the presence of a sizeable discrepancy between data and SM predictions...The data can be consistently described by new physics in the form of a four-fermion contact interaction...[2]

J. High Energy Phys. **2018**, 93.
 Eur. Phys. J. C **77**, 377 (2017).

Summary

ATLAS and CMS are producing high quality HF physics results

- Hadron production and polarization
- Spectroscopy and exotic states
- B decay property and angular analyses

Many new HF results are released

- Excellent commissioning and performance
- More to come from Run-II data

Chinese groups are actively contributing

Welcome to join

ATLAS/CMS: 13TeV HF performances

Complex fitting for precision measurement With complex physics constraints

