Analysis of Neutron Background in the PandaX-II Experiment

Qiuhong Wang Shanghai Institute of Applied Physics, CAS On Behalf of the PANDAX Collaboration

CONTENTS

Neutron Background

Motivation

Traditional Method

Improvements

Results & Summary

Motivation

Material Radioactivity (²³⁸U/²³⁵U/²³²Th)

01

precise knowledge of the radioactivities of detector materials

02 Neutron Generator **03** (SOURCES4A)

a model convert material radioactivity to the number of neutrons and their energy spectrum

Detector Simulation (Geant4)

describe detailed neutron interactions in the xenon target and calculate the final DM-like background

Some Disadvantages

01 Material Radioactivity (²³⁸U/²³⁵U/²³²Th)

- Excessive dependence on radioactivity
- Some samples with large uncertainties

Uniformity assumption

Neutron Generator (SOURCES4A)

Only produce SINGLE NEUTRON spectrum

- Ignore the correlated emission of neutron(s) and γ(s) in the process of (α,n) and spontaneous fission (SF)
- □ Would overestimate low energy background!

Improvement 1: Neutron-γ-Correlated Generator

Improvement 2: Neutron Capture as Data-Driven Method

Use the high energy neutron capture signals in the target xenon as the in situ normalization

Data-driven method: neutron capture signal \rightarrow low energy signal

□ First use AmBe data to study the features of neutron capture signals

Neutron Capture in AmBe Calibration

AmBe Run	Data			WIC .			
	low energy	high energy	Ratio	low energy	high energy	Ratio	ſ
Run 9 @P2-Up	3415	48402	1:14.2	$13732/10^{7}$	$259111/10^7$	1:18.9	
Run 10 @P2-Up	6888	122573	1:17.8	$13711/10^{7}$	$259111/10^7$	1:18.9	Ţ
Run 10 @P2-Down	3502	57578	1:16.4	$13852/10^{7}$	$270572/10^7$	1:19.5	

- Consistent in the order of magnitude
- Take the difference as the uncertainty for high energy signal selection

set neutron- γ -correlated generator as sources

calibration, 25% in Run 9 and 16% in Run 10.

9

Neutron Capture Signals & Background in DM Runs

□ 17 n-capture signals in Run 9 and Run 10 respectively
□ Neutron background in Run 9 = ¹⁷/_{31.8} = 0.53 count
□ Neutron background in Run 10 = ¹⁷/_{29.2} = 0.58 count
□ Statistical uncertainty = ¹/_{√17} = 24%

Summary

 \Box Updated neutron generator: neutron(s)- γ (s) correlation

Use high energy neutron capture signals as the normalization for neutron background

□ More accurate evaluation:

EVALUATION METHOD	Run 9 DM (stat+sys)	Run 10 DM (stat+sys)
Traditional Method	0.85 (50%)	0.83 (50%)
Improved Method Here	0.53 (35%)	0.58 (29%)

