

1

Latest results from ATLAS and CMS

Mingshui Chen

中国科学院高能物理研究所

高能物理分会第十届学术年会 2018.06.23 上海

Outline

- LHC and ATLAS/CMS status
- Physics Results^(*)
 - Higgs
 - SM Physics
 - SUSY and Exotica
- Outlook and Summary

(*)因时间有限,将侧重于最新的物理结果,以及有中国组 贡献的重要结果。难免疏漏,敬请见谅!

Large Hadron Collider (LHC) at CERN

Weight: 14000 tons Diameter: 15 m Length: 28.7 m Magnet field: 3.8 T

CMS: the heaviest collider experiment with 5000-members collaboration

CERN Prévessin

ALICE

Run Status

CMS Integrated Luminosity, pp

Results shown here mostly based on 2016 w/wo 2017 data

Challenge to the experiments

Tau trigger efficiency

• LHC and ATLAS/CMS status

- Physics Results
 - Higgs
 - SM Physics
 - SUSY and Exotica
- Outlook and Summary

ttH coupling (two years ago)

- Indirectly established at Run 1 through the ggH loop process, but model dependent
- The direct ttH coupling was evident, but somewhat higher than expectation

Now we have the ttH observation

- >5 σ observation of ttH from CMS and ATLAS
- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

Now we have the ttt observation

- >5 σ observation of ttH from CMS and ATLAS
- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat.}) \,{}^{+0.17}_{-0.15}(\text{exp.}) \,{}^{+0.14}_{-0.13}(\text{bkg.th.}) \,{}^{+0.15}_{-0.07}(\text{sig.th.})$

Now we have the ttt observation

- >5 σ observation of ttH from CMS and ATLAS
- Very sophisticated analyses, pushing detector performance very far, many channels, MVAs...

PLB 779 (2018) 283, ATLAS-CONF-2018-021

$H \rightarrow \tau \tau$

- Again complex analyses, systematics have to be under excellent control
- Established by the Run-1 ATLAS+CMS combination: observation at 5.5σ (5.0σ exp.)
- Now complemented by individual CMS and ATLAS 5σ's
 (Dup 1 + Dup 2 / each 26 fb⁻¹)

(Run-1+Run-2 / each 36 fb⁻¹)

- CMS 5.9σ (5.9σ)
- ATLAS 6.4σ (5.4σ)
- Moving to measurements

H→bb

- Also difficult analyses with many tough systematic errors, e.g. (W/Z)+HF backgrounds, b-tagging ...
- Run-1+Run-2 signal strengths:

 $\mu_{VH}^{CMS} = 1.06^{+0.31}_{-0.29} \qquad \mu_{VH}^{ATLAS} = 0.90^{+0.28}_{-0.26}$ Both correspond to evidence at 3.6-3.8 σ

H→bb: explore new regimes/ideas Phys.Rev.Lett. 120 (2018) 071802, CERN-EP-2018-140

Direct search for gg→H→bb
 Search for VBF, with an with boosted H→bb events
 additional high p_T photon

Higgs to bosons – entering precision era ATLAS-CONF-2018-018, CMS-PAS-HIG-18-001

 Run-2 analyses with 80 fb⁻¹ for the first time, higher precision is coming!

21

150

160

m,, [GeV]

Higgs mass

 Most precise measurement at the moment comes from CMS H→ZZ→4l mass measurement with 2016 data m_H = 125.26±0.21 GeV

Still limited by statistical uncertainties \rightarrow impact on coupling ~0.5%

Higgs differential cross sections

- Measurements of fiducial and differential cross-section distributions made already at Run-1 with low statistics
- Now with more bins and better precision

Simplified template cross sections

- Simplified template cross-sections (STXS) defined by common effort in LHC Higgs cross-section group
- Finer-grained cross-sections ("Stage-1") becoming accessible now...
- Using these, and/or individual experimental measurements, EFT fits will allow more detailed SM tests – and perhaps provide hints of BSM structure

Higgs rare decays

Combined Higgs boson couplings

- Overall signal strength compatible with the SM
- Not anymore dominated by statistics, already moving to less inclusive measurements

Close to have observed the couplings with all 3rd generation fermions

 One of the targets of LHC Run2

CMS 13 TeV 2016 combination

- LHC and ATLAS/CMS status
- Physics Results
 - Higgs
 - SM Physics
 - SUSY and Exotica
- Outlook and Summary

SM measurements: motivation

 Self-consistency test of the Standard Model

 \rightarrow over-constrain the system: e.g. $\sin^2\theta_w = 1 - M^2_w/M^2_z$ (@ tree)

• Probe new physics

Precision W/top masses

 Self-consistency test of the Standard Model

 \rightarrow over-constrain the system: e.g. $\sin^2\theta_w = 1 - M^2_w/M^2_z$ (@ tree)

• Probe new physics

ATLAS+CMS Preliminary LHClopWG	m _{top} summary, (s = 7-13 TeV	September 2017
World Comb. Mar 2014, [7] stat	total stat	
total uncertainty	m _{teo} ± total (stat ± syst)	s Ref.
ATLAS, I+jets (*)	172.31±1.55 (0.75±1.35)	7 TeV [1]
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013) LHC top WG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	175.1±1.8 (1.4±1.2)	7 TeV [9]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	172.99 ± 0.85 (0.41± 0.74)	8 TeV [11]
ATLAS, all jets 🛏	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS, I+jets	172.08 ± 0.91 (0.38 ± 0.82)	8 TeV [13]
ATLAS comb. (Sep 2017) H+H	172.51 ± 0.50 (0.27 ± 0.42)	7+8 TeV [13]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [14]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.62) (1) ATLAS-COMF-2015-645 (2) ATLAS-COMF-2015-647 (2) ATLAS-COMF-2015-647 (3) Eur. Phys. J. CTD (2016) 230	13 TeV [16] [13] ATLAS-COMF-2017-011 [14] Phys. Rev. Did (2010) 072000
(*) Superseded by results shown below the line	[2] JULP 12 (2012) 108 [3] EULPHys.LCTV (2012) 2012 [4] EULPHys.LCTV (2014) 2016 [11] ATLAS-CONF-abits-168 [5] EULPHys.LCTV (2014) 2018 [11] Phys.Lett.B791 (2016) 200 [6] ATLAS-CONF-abits-162 [12] arXiv:1712.01546	[14] CMS-PAG-TOP-17-607
165 170	175 180	185
	m., [GeV]	

m_{top} error (ATLAS or CMS) from direct reco ~0.5 GeV

SM production cross section measurements

Overall good agreement with SM over 9 orders of magnitude

Probing anomalous TGC/QGC

Probing anomalous TGC/QGC

JHEP07(2017)107, EPJC77 (2017) 141

Sensitive to WWZγ, neutral anomalous QGC

Sensitive to 4-W,HWW anomalous couplings

Heavy flavor

 Angular analyses of flavor-changing neutral current decay B→K(^{*})µ⁺µ[−]

- LHC and ATLAS/CMS status
- Physics Results
 - Higgs
 - SM Physics
 - SUSY and Exotica
- Outlook and Summary

Search for high-mass di-lepton resonances CMS-PAS-EXO-18-006

• Limits for high mass searches extending beyond 4 TeV with first 2017 data analyses

Resonance search with high p_T lepton ATLAS-CONF-2018-017, ATLAS-CONF-2018-017, ATLAS-CONF-2018-015

• Limits for high mass searches extending beyond 4 TeV with first 2017 data analyses

Di-jet resonance in $pp \rightarrow W+X$

 $W' \rightarrow e/\mu + MET$

36

Di-boson resonance searches

- Substructure techniques (for jets, b-tagging) used for maximizing sensitivity to boosted topologies, large mass range
 - Includes using the Higgs as a discovery tool ("Higgs-tagging")

Both experiments have comprehensive di-boson search programs

Di-boson resonance searches

JHEP 03 (2018) 174, arXiv:1805.01908

Mild excess around 440 GeV in bbA search (3.6σ local, 2.4σ global) $X \rightarrow$ Higgs + Photon

Additional Higgs ?

Many searches, no significant excess yet

Dark matter searches

mono-X type search

Constraints from searches looking for visible Z' decays

Dark matter searches

What if Dark Matter doesn't couple to quarks CMS-PAS-EXO-18-008

- Also motivated by LFU tensions and muon g-2
- Search for an L_{μ} - L_{τ} gauge boson: a narrow light Z' decaying in $\mu^{+}\mu^{-}$ with Z \rightarrow 4 μ events

42

Many other exotica searches

Resonances to heavy guarks Excited quarks Z'(1.2%) → tt t* → tg S=3/2 8 fb Z'(10%) → t t* → tg S=1/2 gKK → $h^* \rightarrow tW = K_{1-1}$ W' → th $b^* \rightarrow tW \mid K_{P=}$ h* → tW KuKer 0.4 0.8 1.2 1.6 tb $Mv_B > Mw$ Observed limit 95%CL (TeV)

Observed limit 95%CL (TeV)

余涛哲、

陈晔、

参见Bret、

Searches for SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

December 2017

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫ <i>L dt</i> [fb	D ⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
	$ \begin{array}{l} \bar{q}\bar{q}, \; \bar{q} \rightarrow q \tilde{k}_{1}^{0} \\ \bar{q}\bar{q}, \; \bar{q} \rightarrow q \tilde{k}_{1}^{0} \; (\text{compressed}) \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q \bar{q} \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q \bar{q} \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q \tilde{k}_{1}^{0} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q (\ell \ell) \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q (\ell \ell) \nu \eta \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q (\ell \ell) \nu \eta \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q \ell W Z \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q \ell W Z \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q \ell W Z \tilde{k}_{1}^{0} \\ \bar{g}\bar{g}, \; \bar{g} \rightarrow q q \ell W Z \tilde{k}_{1}^{0} \\ \bar{G}GM \; (\text{bino NLSP}) \\ \bar{G}GM \; (\text{bino Sub-pino NLSP}) \\ \bar{G}ravitino \; LSP \end{array} $	0 mono-jet 0 0 <i>ee, μμ</i> 3 <i>e, μ</i> 0 1-2 τ + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	\$\vec{q}\$ \$\vec{q}\$ \$\vec{q}\$ \$\vec{g}\$ \$\vec{g}\$	$\begin{array}{c c} \textbf{1.57 TeV} & m(\tilde{k}_1^0) < 200 \ \text{GeV}, m(1^{14} \ \text{gen.} \tilde{q}) = m(2^{nd} \ \text{gen.} \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{k}_1^0) < 5 \ \text{GeV} \\ \hline \textbf{2.02 TeV} & m(\tilde{k}_1^0) < 200 \ \text{GeV}, m(\tilde{k}^1) = 0.5(m(\tilde{k}_1^0) + m(\tilde{g})) \\ \hline \textbf{1.7 TeV} & m(\tilde{k}_1^0) < 300 \ \text{GeV}, \\ \hline \textbf{1.8 TeV} & m(\tilde{k}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{1.8 TeV} & m(\tilde{k}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{2.0 TeV} \\ \hline \textbf{2.15 TeV} & rr(NLSP) < 0.1 \ \text{mm} \\ \hline \textbf{2.05 TeV} & m(\tilde{k}_1^0) = 1700 \ \text{GeV}, rr(NLSP) < 0.1 \ \text{mm}, \mu > 0 \\ m(\tilde{c}) > 1.8 \times 10^{-6} \ \text{eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \ \text{TeV} \\ \hline \end{array}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
g med.	$\widetilde{g}\widetilde{g}, \ \widetilde{g} ightarrow b b \widetilde{\lambda}_1^0$ $\widetilde{g}\widetilde{g}, \ \widetilde{g} ightarrow t \widetilde{\lambda}_1^0$	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1	β β	1.92 TeV m(χ̃ ⁰ ₁)<600 GeV 1.97 TeV m(χ̃ ⁰ ₁)<200 GeV	1711.01901 1711.01901
direct production	$ \begin{split} & \tilde{b}_{1} \tilde{b}_$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \end{matrix} 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b D-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes b Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	Š1 950 GeV Š1 275-700 GeV Ĩ1 117-170 GeV 200-720 GeV Ĩ1 90-198 GeV 0.195-1.0 TeV Ĩ1 90-430 GeV 150-500 GeV Ĩ2 280-790 GeV 150-500 GeV Ĩ2 320-880 GeV 320-880 GeV	$\begin{split} & m(\tilde{\xi}_1^0) < 420 \text{GeV} \\ & m(\tilde{\xi}_1^0) < 200 \text{GeV}, m(\tilde{\xi}_1^+) = m(\tilde{\xi}_1^0) + 100 \text{GeV} \\ & m(\tilde{\xi}_1^+) = 2m(\tilde{\xi}_1^0), m(\tilde{\xi}_1^0) = 5 \text{GeV} \\ & m(\tilde{\xi}_1^0) = 1 \text{GeV} \\ & m(\tilde{\xi}_1^0) - m(\tilde{\xi}_1^0) = 5 \text{GeV} \\ & m(\tilde{\xi}_1^0) > 150 \text{GeV} \\ & m(\tilde{\xi}_1^0) = 0 \text{GeV} \\ & m(\tilde{\xi}_1^0) = 0 \text{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
direct	$ \begin{array}{l} \bar{\ell}_{L,R}\bar{\ell}_{L,R}, \bar{\ell} \rightarrow \ell \bar{k}_{1}^{0} \\ \bar{\chi}_{1}^{+}\bar{\chi}_{1}^{-}, \bar{\chi}_{1}^{+} \rightarrow \bar{\ell}_{N}(\ell\bar{\nu}) \\ \bar{\chi}_{1}^{+}\bar{\chi}_{1}^{-}\bar{\chi}_{2}^{+}, \bar{\chi}_{1}^{+} \rightarrow \bar{\nu}(\tau\bar{\nu}), \bar{\chi}_{2}^{0} \rightarrow \bar{\tau}\tau(\nu\bar{\nu}) \\ \bar{\chi}_{1}^{+}\bar{\chi}_{2}^{0} \rightarrow \bar{\ell}_{L}\nu \bar{\ell}_{L}(\bar{\ell}\bar{\nu}), \bar{\nu}\bar{\ell}_{L}(\bar{\ell}\bar{\nu}) \\ \bar{\chi}_{1}^{+}\bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{1}^{0} \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{+}\bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{1}^{0} \bar{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \bar{\chi}_{2}^{0}\bar{\chi}_{2}^{0}, \bar{\chi}_{2,3}^{0} \rightarrow \bar{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod., \bar{\chi}_{1}^{0} \rightarrow \gamma \\ GGM (bin On NLSP) weak prod., \bar{\chi}_{1}^{0} \rightarrow \gamma \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \cdot 3 \ e, \mu \\ 2 \cdot 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ d \widetilde{G} \ 1 \ e, \mu + \gamma \\ d \widetilde{G} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	\$\vec{k}\$ 90-500 GeV \$\vec{k}_1^*\$ 750 GeV \$\vec{k}_1^*\$ 760 GeV \$\vec{k}_1^*\$ 760 GeV \$\vec{k}_1^*\$ \$\vec{k}_2^*\$ \$\vec{k}_1^*\$ \$\vec{k}_2^*\$ \$\vec{k}_1^*\$ \$\vec{k}_2^*\$ \$\vec{k}_2^*\$ \$\vec{580 GeV}{\vec{k}_2^*\$ \$\vec{k}_2^*\$ \$\vec{635 GeV}{\vec{k}_2^*\$ \$\vec{w}\$ 115-370 GeV \$\vec{w}\$ 1.06 TeV	$\begin{split} \mathfrak{m}(\tilde{k}_{1}^{0}) = 0 & \mathfrak{m}(\tilde{k}_{1}^{0}) = 0, \mathfrak{m}(\tilde{k}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{k}_{1}^{0}) + \mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = 0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{k}_{1}^{0}) + \mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = \mathfrak{m}(\tilde{k}_{2}^{0}), \mathfrak{m}(\tilde{k}_{1}^{0}) = 0.5(\mathfrak{m}(\tilde{k}_{1}^{0}) + \mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = \mathfrak{m}(\tilde{k}_{2}^{0}), \mathfrak{m}(\tilde{k}_{1}^{0}) = 0.5(\mathfrak{m}(\tilde{k}_{2}^{0}) + \mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{m}(\tilde{k}_{1}^{0}) = \mathfrak{m}(\tilde{k}_{2}^{0}), \mathfrak{m}(\tilde{k}_{1}^{0}) = 0, \tilde{\ell} \text{ decoupled} \\ \mathfrak{m}(\tilde{k}_{2}^{0}) = \mathfrak{m}(\tilde{k}_{3}^{0}), \mathfrak{m}(\tilde{k}_{1}^{0}) = 0, \mathfrak{m}(\tilde{k}, \tilde{\nu}) = 0.5(\mathfrak{m}(\tilde{k}_{2}^{0}) + \mathfrak{m}(\tilde{k}_{1}^{0})) \\ \mathfrak{cr<1} \operatorname{mm} \\ \mathfrak{cr<1} \operatorname{mm} \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
particles	$\begin{array}{l} \text{Direct } \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\top} \text{ prod., long-lived } \tilde{X}_{1}^{\pm} \\ \text{Direct } \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\top} \text{ prod., long-lived } \tilde{X}_{1}^{\pm} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Stable } \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron, } \\ \text{Metastable } \tilde{g} \text{ R-hadron, } \\ \tilde{g} \text{ models} \tilde{g} \text{ models} \tilde{g} \text{ models} \\ \tilde{g} \text{ models} \tilde{g} \text{ models} \tilde{g} \text{ models} \\ \tilde{g} \text{ models} \tilde{g} \text{ models} \tilde{g} \text{ models} \\ \tilde{g}$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - - μ -	Yes Yes - Yes - Yes -	36.1 18.4 27.9 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c c} \dot{x}_{1}^{*} & 460 {\rm GeV} \\ \dot{x}_{1}^{*} & 495 {\rm GeV} \\ \hline \\ $	$\begin{split} m(\tilde{\xi}_1^+)-m(\tilde{\xi}_1^0)-160 \mbox{ MeV}, \tau(\tilde{\chi}_1^+)=0.2 \mbox{ ns}\\ m(\tilde{\chi}_1^+)-m(\tilde{\chi}_1^0)-160 \mbox{ MeV}, \tau(\tilde{\chi}_1^+)<15 \mbox{ ns}\\ m(\tilde{\xi}_1^0)=100 \mbox{ GeV}, 10 \ \mu s<\tau(\tilde{g})<100 \mbox{ ss}\\ 1.57 \mbox{ TeV} \qquad m(\tilde{\xi}_1^0)=100 \mbox{ GeV}, \tau>10 \mbox{ ns}\\ 2.37 \mbox{ TeV} \qquad \tau(\tilde{g})=0.17 \mbox{ ns}, m(\tilde{\xi}_1^0)=100 \mbox{ GeV}\\ 10<\mbox{tan} \beta<50 \\ 1<\tau(\tilde{\chi}_1^0)<3n \mbox{ ss} SPS8 \mbox{ model}\\ 7<\tau(\tilde{\chi}_1^0)<3 \mbox{ ns}, m(\tilde{g})=1.3 \mbox{ TeV} \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
	LFV $pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow e\mu/et/\mu\tau$ Bilinear RPV CMSSM $\tilde{X}_1^*\tilde{X}_1^r, \tilde{X}_1^* \rightarrow W\tilde{X}_1^0, \tilde{X}_2^0 \rightarrow eev, e\mu\nu, \mu\mu\nu$ $\tilde{X}_1^*\tilde{X}_1, \tilde{X}_1^* \rightarrow W\tilde{X}_1^0, \tilde{X}_2^0 \rightarrow \tau\tau\nu_e, e\tau\nu_\tau$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{g}, \tilde{X}_1^0 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}_1\tilde{v}, \tilde{X}_1^0 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}_1\tilde{v}, \tilde{X}_1^0 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{u}_1\tilde{v}, \tilde{L}_1 \rightarrow bs$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8- 1 e, μ 8- 0 2 e, μ		- Yes Yes Yes ets - 4 b - 4 b - 5 -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	\$\bar{r}\$. \$\bar{a}\$.\$\bar{b}\$ \$\bar{x}_1^*\$	1.9 TeV $\lambda_{111}^{\prime}=0.11, \lambda_{132/133/233}=0.07$ 1.45 TeV $m(\tilde{g})=m(\tilde{g}), cr_{LSP}<1 \text{ mm}$ eV $m(\tilde{\chi}_{1}^{0})>400 \text{GeV}, \lambda_{12k}\neq0 \ (k=1,2)$ $m(\tilde{\chi}_{1}^{0})=1075 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1075 \text{ GeV}$ 2.1 TeV $m(\tilde{\chi}_{1}^{0})=1 \text{ TeV}, \lambda_{112}\neq0$ 1.65 TeV $m(\tilde{\chi}_{1}^{0})=1 \text{ TeV}, \lambda_{112}\neq0$ 1.65 TeV $m(\tilde{\chi}_{1})=1 \text{ TeV}, \lambda_{323}\neq0$ +1.45 TeV $BR(\tilde{r}_{1}\rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY2016-22 1704.08493 1704.08493 1710.07171 1710.05544
ier	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^{\vee}$	0 Ilimita an r	2 c	Yes	20.3	č 510 GeV	m(𝒱¹)<200 GeV	1501.01325
ily Ien	a selection of the available mas	s iimits on r mits are bas	sed on	s or	1	0 ⁻¹	Mass scale [TeV]	

*Oi phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Ot

Mass scale [TeV]

参见庄胥爱报告 44

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Push hard to full parameter space

-5

Looking forwards

Almost two weeks ahead schedule Expect ~150 fb⁻¹ (almost double 2016+2017) by the end of 2018

Much more work now devoted to upgrades

Summary

- Approaching a decade after the start, the LHC is now a mature machine, and the detectors are stable, and very well understood
- Direct observation on ttH: it's there at tree-level, and y_t≈1
- Still no significant deviation/excess from ATLAS/ CMS, but only one percent of the full LHC data sample analyzed!
- Completion of Run-2, upgrades and then much more data beyond
- Let's hope something is still hiding out there

Don't miss ICHEP for more and exciting resutls!

非常感谢ATLAS和CMS组成员提 供大量最新的研究成果。近几年中国 组研究队伍和实力显著提升,有许多 人担任合作组L2/L3职位,在众多重要 物理课题中担任负责人和论文编辑, 并在探测器运行、升级上承担越来越 多的任务,在合作组中的显示度和作 用明显提高!

谢谢大家!

References

- ATLAS
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- CMS
 - <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>