CDEX高纯锗暗物质实验中的 宇生本底模拟研究

- ✓ CDEX实验介绍
- ✓ 锗晶体内宇生放射性模拟介绍
- ✓ CDEX高纯锗暗物质实验中的宇生本底评估
- ✓ 其他稀有事例探测实验的可行性

马菁露 清华大学 2018-06-22

2018/6/22

CDEX实验

> 实验本底来源分析:

周围环境中的放射性:

- 宇宙线µ子: CJPL的µ子通量: (2.0±0.4)×10⁻¹⁰ cm⁻²s⁻¹ (可忽略)
- 环境中子本底: µ致中子 ~10⁻¹⁰ cm⁻²s⁻¹ (可忽略)

(α, n)中子、²³⁸U自发裂变中子~10⁻⁵ cm⁻²s⁻¹

• 环境伽马本底: 岩石、混凝土及液氮恒温器中的天然放射性(U系、Th系、40K)

探测器结构材料和电子学放射性:

探测器支撑材料、电子学器件的宇生及天然放射性
 电解铜、材料筛选等优化后 10⁻³ cpkkd @ 2~4 keV

锗晶体内部宇生放射性:

• 长半衰期宇生放射性核素 (⁶⁸Ge、⁶⁵Zn、³H等)

锗晶体内宇生放射性

▶ 宇生放射性核素产生机制及特点:

- 当高能宇宙射线轰击锗晶体时,会与锗原子发生俘获、非弹散射、 散列等反应,在晶体内部产生一系列具有放射性的不稳定核素;
- 宇生放射性核素依据各自半衰期进行衰变,伴随放出伽马、电子等 粒子,构成本底来源的一种;
- 核素种类繁多(对于Ge来说可能的有: ⁷⁸Se~²H);
- 核素半衰期分布从数秒到几百年;
- 过程复杂,覆盖能量范围宽,随时间演化。

▶ 宇生本底的重要性:

- 在CDEX1、CDEX10上都看到了明显的宇生核素特性射线峰
- 在晶体内部,无法屏蔽,一旦产生短时间内很难有效去除
- 其来源及抑制方法的研究对吨级实验本底抑制意义重大
- 需要先于实验展开研究

▶ 分析方法

如果认为Pi为放射性同位素i的产生率,那么它可以表示成以下公式:

CRY Geant4

模拟过程:

- CRY产生的宇宙射线信息作为 源项输入;
- Geant4模拟宇宙射线与物质 的相互作用;
- 统计宇宙线Neutron、Proton、 Muon、Gamma入射情况下宇 生放射性核素产生率。

N _j :稳定的靶核 j 的数量
Øk: 宇宙射线 k 粒子的通量
σ _{ijk} :宇宙射线k粒子作用在稳定靶核j上产生放 射性同位素i的反应截面

北京海平面宇宙射线能谱

锗晶体内宇生放射性模拟

▶ 宇生放射性核素衰变规律

当锗晶体暴露在宇宙射线的照射下,满足:

yield curve

2018/6/22

▶ 主要放射性核素评估(综合考虑半衰期与产生率)

宁生技事	半衰期 衰变模式	<u> </u>	产生率(北京)(day ⁻¹ kg ⁻¹)					
于土权系		叔艾傑氏	叔 安丁₩ ⁻	中子	质子	μ 子	伽马	总和
⁶⁸ Ge	270.9 d	EC	⁶⁸ Ga	73.30	5.41	0.31	4.03	83.05
⁶⁸ Ga	67.7 m	EC or β^+	⁶⁸ Zn	73.30	5.41	0.31	4.03	83.05
⁶⁵ Zn	243.9 d	EC or β^+	⁶⁵ Cu	35.14	3.64	1.23	0.46	40.47
⁶³ Ni	101.2 yr	β^-	⁶³ Cu	4.05	0.54	0.12	0.08	4.79
⁵⁷ Co	271.7 d	EC	⁵⁷ Fe	3.55	1.07	0.03	0.03	4.68
⁶⁰ Co	5.3 yr	β^-	⁶⁰ Ni	1.21	0.22	0.01	0.01	1.45
⁵⁵ Fe	2.7 yr	EC	⁵⁵ Mn	3.01	1.05	0.04	0.05	4.15
⁵⁴ Mn	312.2 d	EC	⁵⁴ Cr	0.67	0.24	0.01	0.02	0.94
49 V	330.0 d	EC	⁴⁹ Ti	0.90	0.49	0.02	0.02	1.42
³ H	12.3 yr	eta^-	³ He	18.33	4.82	0.33	0.20	23.68

▶ 锗材料宇宙射线照射场景

锗晶体内宇生放射性模拟

▶ 宇生核素产额计算过程及参数确定

• 假设探测器制作过程中,产生率 P_1 ,制作时间 t_f

运输过程中,产生率P₂,运输时间t_t 经过t_f+t_f后的某宇生放射性个数为:

$$N = \frac{P_1}{\lambda} (1 - e^{-\lambda t_f}) e^{-\lambda t_t} + \frac{P_2}{\lambda} (1 - e^{-\lambda t_t})$$

放入地下实验室后,经过冷却时间t,后的个数为:

$$N = \frac{P_1}{\lambda} (1 - e^{-\lambda t_f}) e^{-\lambda (t_t + t_c)} + \frac{P_2}{\lambda} (1 - e^{-\lambda t_t}) e^{-\lambda t_c}$$

 由于CDEX-1B探测器的历史清楚并且较为简单,可以利用CDEX-1B的本底 数据对模拟结果进行验证。

数据	编号	冷却时间	采数起止日期	采数时间	活时间	
		(day)		(day)	(day)	
	1	147	20140327 ~ 20140520	55	51.3	-
	2	331	20140927 ~ 20141108	42	40.4	

▶ 参数确定

• 用CDEX-1B的实验数据进行验证

处理实验数据得到灵敏区域(Bulk)能谱;

利用统计性较好的65Zn、68Ge两个峰进行参数确定,其他峰进行验证;

▶ 正确性检验

• 用CDEX-1B的实验数据进行验证

计算结果和实验测量结果吻合得很好。

模拟结果与实验数据比较

Radionuclide	Measured X-Ray	Measured	Simulated
	Energy (keV)	Peak Count	Peak Count
⁶⁸ Ge	10.38 ± 0.01	1919.4 ± 68.8	1918.7
⁶⁸ Ga	9.68 ± 0.01	190.8±23.9	203.3
⁶⁵ Zn	8.95 ± 0.01	685.8±38.7	689.4
^{56,57,58} Co	7.14 ± 0.02	21.4 ± 17.2	22.2
⁵⁵ Fe	6.50 ± 0.02	44.1±16.9	55.4
⁴⁹ V	4.95±0.02	52.3±19.6	46.5

2014: 03-05

2014: 09-11

▶ 探测器制作运输方案

1、天然锗

- ▶ 暗物质能区的灵敏度分析
 - 1、天然锗

地面探测器制作1个月,运输1一个,地下冷却3年能谱

▶ 暗物质能区的灵敏度分析

1、天然锗

68Ge本底降低方法:1) 增加冷却时间 2) 减少产生率

改变冷却时间

⁶⁸Ge的产生截面

▶ 探测器制作运输方案

2、⁷⁶Ge富集锗

同位素富集(俄罗斯电化) 非Ge宇生核素可以有效去隔 ⁶⁸ Ge开始计算	GeO₂送至CJPL 有屏蔽运输 CJPL还原锗金属	锗金属送至美国 有屏蔽运输
探测器运输至CJPL 有屏蔽运输 CJPL进行实验	探测器制作 每天8小时工作时间 其余地下实验室储藏 工作时间约1个月	区熔、拉单晶 非Ge宇生核素 开始计算
过程	经历时间	核素状态
GeF ₄ 富集、转化成GeO ₂ 储存	40天	⁶⁸ Ge开始计算
GeO2运输至CJPL	15天	有屏蔽运输
金属锗运输到美国	30天	有屏蔽运输
区熔、拉单晶、探测器制作	30天(有效时间10天)	除 ⁶⁸ Ge外其余核素 开始计算
2018/6/22 探测器运到CJPL	30天	有屏蔽运输 16

▶ 暗物质能区的灵敏度分析

2、⁷⁶Ge富集锗

- ³H连续本底改善不 明显,连续能谱无 法扣除;
- 10⁻² cpkkd依然无法 满足吨级暗物质实 验的本底要求。

Energy [keV]

▶ 暗物质能区的灵敏度分析

2、⁷⁶Ge富集锗

³H的产生截面于Ge的各同位素差异不明显

2018/6/22

▶ 暗物质能区的灵敏度分析

- 3、在地下实验室进行晶体生长及探测器制作
- 除⁶⁸Ge、⁶⁸Ga外,包括³H在内的其他长半衰期宇生放射性核素均降低
 到了可以忽略的水平。

▶ 低本底下的新物理

1、太阳中微子探测

暗物质直接探测实验组的中微子本底能谱,对于底阈值点电极高纯锗探测器来说,随着阈值和本底的降低,最有可能先探测到⁸B太阳中微子。

2018/6/22

▶ 低本底下的新物理

- 1、太阳中微子探测
- 当本底水平达到2×10⁻³ cpkkd,探测器阈值达到200 eV的时候,将 不可避免的触碰到中微子台阶。

其他稀有事例探测实验

▶ 低本底下的新物理

2、无中微子双β衰变探测

 主要本底贡献来自于 ⁶⁰Co (β⁻)
 ⁶⁸Ga (EC or β⁺),

可以通过多点事例甄 别进行进一步降低。 有希望到10⁻⁷cpkkd,结 合中微子有效质量,可 以确定正反序。

其他稀有事例探测实验

▶ 低本底下的新物理

- 2、无中微子双β衰变探测
- 目前国际水平

GERDA: $1.9^{+3.0}_{-1.4} \times 10^{-6}$ cpkkd Majorana: $4.9^{+8.5}_{-3.0} \times 10^{-6}$ cpkkd LEGEND-1000: 10^{-7} cpkkd 地下生长晶体及探测器制作(仅包含富集40天、运输45天)

- ➤在暗物质探测及0vββ探测等稀有事例探测实验中,宇生本底分析和 抑制非常关键;
- ▶通过Geant4与CRY建立了一套完整的宇生本底评估方案,计算得到的 宇生核素产额可以与已有实验很好吻合,有利于对未来吨级暗物质实 验的宇生本底进行预测;
- ➤在低能区的主要宇生本底贡献来自于⁶⁸Ge和⁶⁸Ga的特征X射线峰以及 ³H的β-衰变连续谱。在2 MeV高能区的主要宇生本底贡献来自于⁶⁸Ga 的β+衰变以及⁶⁰Co的β-衰变连续谱。
- ▶长时间的地下冷却是降低宇生本底的一种方法,长远来看在地下进行 晶体生长及探测器制作将会是未来实验发展的必然方向。

> 实验本底研究进展

高纯锗探测器的本底水平: CDEX-1T目标10⁻³ cts/(keV·kg·day)@1 keV

暗物质实验:

60

20

70 80

无中微子双贝塔(0νββ)衰变实验:

GERDA实验 ~0.009 cpkkd @ 500 keV

EDELWEISS

ultiple hits /5

40 45

Single hits

25

CDEX-1T吨级高纯锗阵列探测器:暗物质及无中微子双β衰变探测

- 基坑直径和深度: Φ18m×H18m
- 液氮容器: Φ16m×H19m
- 液氮保温层: 1.5m
- 液氮屏蔽体: Φ13m×H13m 2018/6/22

- 液氮冷却/屏蔽系统
- 极低本底环境
- 高纯锗阵列增大靶物质质量

补充

▶ 实验本底来源分析:

周围环境中的放射性:

- 宇宙线μ子: CJPL的μ子通量: (2.0±0.4)×10⁻¹⁰ cm⁻²s⁻¹ (可忽略)
- 环境中子本底: μ致中子 ~10⁻¹⁰ cm⁻²s⁻¹ (可忽略)

(α, n)中子、²³⁸U自发裂变中子~**10**-5 cm⁻²s⁻¹

• 环境伽马本底:岩石、混凝土及液氮恒温器中的天然放射性(U系、Th系、40K) 经过液氮屏蔽后的环境中子本底 10⁻⁸ cpkkd @ 2~4 keV

环境伽马本底 10-6 cpkkd @ 2~4 keV

液氮自身本底: ⁷Be、⁸⁵Kr、²²²Rn, 纯化后**10**⁻⁴ cpkkd @ 2~4 keV

探测器结构材料和电子学放射性:

• 探测器支撑材料、电子学器件的宇生及天然放射性 电解铜、材料筛选等优化后 10⁻³ cpkkd @ 2~4 keV

锗晶体内部宇生放射性:

长半衰期宇生放射性核素(⁶⁸Ge、⁶⁵Zn、³H等)
 2018/6/22

补充

▶ 宇宙线

- 相同海拔, 通量增量在几倍的范围内;
- 相同纬度,通量增量往往超过两个数量
 级,随之而来的是宇生核素产额的急剧
 增加,避免探测器的高空运输。
- 宇宙射线粒子与各同位素反应产生放射 性核素的截面不同,同位素丰度也会影 响某些核素的产生率。

	Krasnoyarsk (N $56^\circ)$		Strasbour	rg (N 49°)	Beijing (N 40°)	
	0 m	$11300 {\rm m}$	0 m	11300 m	0 m	11300 m
Neutron	3.400×10^{-3}	1.969	2.982×10^{-3}	1.415	2.200×10^{-3}	8.793×10^{-1}
Proton	2.169×10^{-4}	1.453×10^{-1}	2.043×10^{-4}	1.044×10^{-1}	1.657×10^{-4}	6.457×10^{-2}
Muon	1.191×10^{-2}	8.960×10^{-2}	1.191×10^{-2}	8.420×10^{-2}	1.182×10^{-2}	7.122×10^{-2}
Gamma	1.732×10^{-2}	2.755	1.722×10^{-2}	2.534	1.682×10^{-2}	2.131
2018/6/22						28

▶ 参数确定

 由于CDEX-1B探测器的历史清楚并且较为简单,可以利用CDEX-1B的本底 数据对模拟结果进行验证。

补充

▶ 未来吨级实验中的宇生放射性评估:

2、对于0vββ探测(2MeV附近能区)

(2)富集⁷⁶Ge的锗 Enriched Ge

可以利用多点事例甄别有效降低高能区本底水平。在2MeV附近,对于⁶⁰Co来说多 点事例率大于90%,对于⁶⁸Ga来说多点事例率大于70%。

