

Status of CEPC ECAL R&D

Yazhou Niu

On behalf of CEPC calorimeter working group

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

CEPC-MOST Project

- It is a CEPC R&D project funded by Ministry of Science and Technology of China in 2016-2021 (No.2016YFA0400404)
- The proposed tasks and goals for CEPC ECAL R&D
 - Choose appropriate technology option for CEPC ECAL
 - Build a small ECAL physics prototype with cell size of $5mm \times 5mm$
 - Design an active cooling system prototype using CO_2 , towards active cooling design for ECAL operating with continuous mode

Outline

- > Motivation : PFA and Imaging Calorimetry
- > ECAL Unit Study and Optimization
 - > Simulation and Optimization
 - Photon sensor
 - Scintillator strip
 - Readout Electronics
- > Single Layer Prototype
- > Summary

IP2

Booster(50Km

CEPC Collider

BTC

LTB.

+ e- Linac (240m)

Motivation

Requirements of CEPC ECAL:

- Energy resolution of γ $\sigma_E/E \approx 16\%/\sqrt{E} \oplus 1\%$
- Jet energy resolution (combined tracker, ECAL and HCAL)

 $\sigma_E/E \approx (3\% \sim 4\%)$

The Particle Flow Algorithm (PFA) calorimetry concept was proposed: Reconstruct each individual final state particle in the most suitable sub-detector

PFA and Imaging Calorimetry

 Simulation of WW and ZZ separation for the events in 4jets

$$\sigma_{jet}^2 = \sigma_{h^{\pm}}^2 + \sigma_{\gamma}^2 + \sigma_{h^0}^2 + \sigma_{confusion}^2 + \sigma_{threshold}^2 + \sigma_{losses}^2$$

- High granularity
- Good shower separation
- Good energy resolution

ECAL Options

- ✓ Scintillator-tungsten ECAL
 - Larger detector PFA
 - Sandwich structure
 - Absorber + SD + Electronics
 - Smaller Moliere radius
 - Tungsten
 - Larger dynamic ranger
 - Scintillator + SiPM
 - SPIROC Chip

ECAL Optimization I

Scintillator-tungsten ECAL:

- Absorber thickness: $24 X_0$
- Sampling number: 30 layers
- Cell size: <10mm*10mm

10⁻¹

 10^{-2}

o/E

see more@arXiv:1712.09625v3

Absorber thickness

1.2

ECAL Optimization II

- \cdot Dynamic range of one SD
 - 1MIP~800MIPs
- ~15p.e. @ 1 MIP
 - Photon sensor : >12,000
- Gain :~10⁵
 - Electrics: 240fC~200pC

Hit Max Energy of One Unit

2018/6/22

Scintillator-tungsten ECAL

- > Scintillator strip: $45mm \times 5mm \times 2mm$
- High pixel SiPM: 10k
- Frontend electronics chip: SPIROC
- Assemble scintillator module in the other side of EBU
- Orthogonal arrangement of adjacent layers: achieve 5mm × 5mm cell

第十届高能物理学术年会 2018 SJTU

SiPM Study

SiPM Features

- High gain
- Low power
- _ Small size

- Large dynamic range

Wavelength (nm)

SiPM Gain

single photon distribution

2018/6/22

11

SiPM Linearity

Test with different Photon Width(PW): 5ns, 10ns, 20ns and 40ns

第十届高能物理学术年会 2018 SJTU

2018/6/22

SiPM Linearity

Test with different Photon Width(PW): 5ns, 10ns, 20ns and 40n 5ns PW

• Enabling dynamic range up to 16,000 photons through correction

第十届高能物理学术年会 2018 SJTU

^{2018/6/22}

¹³

Scintillator Light-Yield

Scintillator non-Uniformity

Two type SiPM coupling mode

- SiPM (Hamamatsu S12571-010P) embedded at the sideend or the bottom-end of the scintillation strip
- Light outputs along the length of the scintillator strip is non-uniformity, degrades the energy resolution

Scintillator non-Uniformity

How much is the effect of uniformity on energy reconstruction?

第十届高能物理学术年会 2018 SJTU

New coupling mode

SiPM embedded at bottom-center of the strip

New coupling mode have many merits:

- ✓ Reducing light outputs non-uniformity
- \checkmark Avoiding the dead area between scintillators
- $\checkmark~$ Simplifying process of scintillators assembling
- $\checkmark\,$ Enabling to extend the SiPM area with more pixels

SPIROC2b chip

- SiPM front-end with ASIC SPIROC2b of 36 channels
- FPGA (Artix-7 200T)
- DIF is compatible for FEB
- USB for data upload & cmd sending
- USB for single DIF, and **serial port for** DAQ when using multiple DIF
- Switched capacitor array store charge measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable Cf of pre-amplifer
 - Rload on the board
 - Shaping time and delay

- Dynamic range: ~100fC~200pC
- channels: 36
- Dead time: 2ms
- Polar: positive
- ✓● power: 8mW/channel

第十届高能物理学术年会 2018 SJTU

Readout Electronics

Readout Electronics

> Test platform

- Signal generator for electronic testing
- Sci + SiPM detector with cosmic triggers
- Power supply, oscilloscope and PC

第十届高能物理学术年会 2018 SJTU

System schematic

Cosmic ray Results

	sigma/ Ch	MIP/Ch	s/N
50ohm	2.7	35.7	13.2
200ohm	6.0	147.2	24.5
1kohm	24.7	389	15.7

Single layer prototype

in the Shanghai institute of Ceramics(SIC)

- Single layer prototype for the study of modules layout, integration, preliminary performance
- 144 modules of scintillator strip coupling with SiPM(S12571-010P)
- Half are side-end coupling mode, another half are bottom-center embedded coupling mode(I) unfinished
- Side-end coupling mode scintillators wrapped with ESR(II) or Teflon(III)

Single layer prototype

SiPM with H.V.

27(

26(

240

high Mean

Long time work stability

Preliminary performance

Preliminary performance

signal noise ratio

第十届高能物理学术年会 2018 SJTU

2018/6/22

25

Summary

- Optimized ECAL absorber thickness, active layers and cell size
- Improved uniformity of scintillator strip light output
- Achieved SiPM response function for nonlinearity correction
- Assembled half of single layer prototype and obtained preliminary results
- Great progress has been made, but much more needs to be done

Summary

- Optimized ECAL absorber thickness, active layers and cell size
- Improved uniformity of scintillator strip light output
- Achieved SiPM response function for nonlinearity correction
- Assembled single layer prototype and obtained preliminary results
- Great progress has been made, but much more needs to be done

Thanks for your attention!

backup

近代物理系 中国科学技术大学

2018/6/22

28

Higgs产生与衰变

近代物理系 中国科学技术大学

2018/6/22

29

W+Silicon

近代物理系 中国科学技术大学

探测单元的研制

- 闪烁体: BC408
- 包装: Teflon / ESR
- MIP: ⁹⁰Sr
- 数据采集: QDC

近代物理系 中国科学技术大学

2018/6/22