

Performance of DAMPE BGO Calorimeter in Ion Beam Test

Yifeng Wei (On behalf of the DAMPE collaboration)

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China 2018/06/22

Outline

- DAMPE experiment
- BGO calorimeter
- \cdot Ion beam test of BGO calorimeter
- Summary

DAMPE Mission

- DArk Matter Particle Explorer (DAMPE) is an orbit experiment for detecting high energy cosmic ray
- Launch: 17th Dec. 2015, CZ-2D rocket
- Life time > 3 years

- Orbit: sun-synchronous
- Altitudes: 500 km
- Period: 94 minutes
- 5 million events/day
- 16 GB/day downlink

Scientific Objectives

Science	Measurement			
Dark Matter	GeV-10TeV electronγ ray spectrum and space distribution			
Cosmic ray Origin & propagation	(1)0.1–100TeV nuclide spectrum (P-Fe) (2)gamma ray spectrum and space distribution of SNR			
Gamma ray astronomy	(1)gamma ray sources (2)GRB			

CNINA

- -Purple Mountain Observatory, CAS, Nanjing
- -National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- -Institute of Modern Physics, CAS, Lanzhou

ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento SWITZERLAND
- University of Geneva

DAMPE Detector

- Charge measurement (dE/dx in PSD, STK)
- Precise tracking (STK + BGO)
- Precise energy measurement (BGO)
- Particle identification (BGO + NUD)

				0,1201
Radiation length	32	8.6	17	28
Energy resolution	1.5%@ 100 GeV	>8.5%@ 100 GeV	2%@ 100 GeV	2%@ 100 GeV
Acceptance (m²Sr)	>0.3	>2	0.055	0.12
Background suppression	105	103~104	105	10 ⁵

BGO Calorimeter

- 308 BGO bars (25*25*600 mm³)
- 14 layers, 22 bars per layer
- 32 radiation lengths
- 1.6 nuclear interaction lengths
- Energy range: 5GeV-10TeV(e/γ)
- Energy resolution: 1.5%@800GeV
 (e/γ)
- Energy range of proton/nuclide: 50GeV-100TeV
- Energy resolution of proton:
 <40%@800GeV

- Provide trigger
- Energy measurement
- e/p seperation
- Track seed

Detection Unit of the BGO ECAL

- Energy response of one BGO bar is from 10MeV (0.5MIPs) to 2TeV (10⁵MIPs)
- Two-end measurement
 of one BGO bar
- Multi-dynode readout of one PMT

Beam Test @ CERN

- · 22 days, PS & SPS
 - electron: 0.5 243 GeV
 - Proton: 3.5 10 GeV
 - gamma: 0.5 20 GeV
 - muon: 150 GeV
- 17 days, SPS
 - Argon: 30, 40, 75 GeV/n
 - Proton: 30, 40 GeV
- 21 days, SPS
 - Proton: 400 GeV
 - electron: 20 150 GeV

Electron Response in the BGO Calorimeter (Beam Test)

Jin Chang, et al., Astroparticle Physics, 95 (2017): 6-24. Zhiyong Zhang, et al., NIM A, 836 (2016): 98-104.

Ion Beam Test Set up & Charge Measurement

S1

Selection Magnet A/Z=2

Charge identification with dE/dx detectors before the BGO Calorimeter

Charge Estimator

Charge Identification with the BGO Calorimeter

MIP events in first layer of the **BGO ECAL** were utilized to identify charge Ν

Charge Identification with the BGO Calorimeter

Quenching Effect of the BGO Crystal

40GeV/n MIPs vs Z Data 80⊨ ⇔Simu Sqrt(Energy(MeV)) 0^t0 Ζ

- Quenching effect was observed in the case of Z>5
- QF=PeakData/PeakSimu

Energy Response to Ions

- A pre-selection is applied to ion data
 - Pass high energy trigger
 - Shower starts at the top of the BGO calorimeter

Energy Response to Ions (40 GeV/n) MC: Geant 4.10.1 QGSP_FTFP_BERT & FTFP_BERT

Energy Response to Ions (75 GeV/n)

16

Energy Fraction to Ions

Energy Fraction = Energy Deposition/Incident Energy Within max difference ~ 6%

Energy Resolution to Ions

Energy Fraction vs Incident Energy

Summary

- An ion beam test was performed for the DAMPE BGO ECAL
- Quenching effect of BGO crystal is observed in high energy ion beam
- More than 30% energy deposited in the BGO ECAL for each kind of ion
- The max difference for energy fractions between MC and data is about ~ 6%
- Energy resolution is better than 30%

Summary

- An ion beam test was performed for the DAMPE **BGO ECAL**
- Quenching effect of BGO crystal is observed in high energy ion beam
- More than 30% energy deposited in the BGO ECAL for each kind of ion
- · The max difference for energy fractions between znk You! MC and data is about ~ 6%
- Energy resolution is better than 30%

Backup

Different MC Model (40 GeV/n)

