## 中微子理论研究进展

## 丁桂军 中国科学技术大学

中国物理学会高能物理分会第十三届全国粒子物理学术会议 上海交通大学,6.19-24, 2018



## **Neutrino oscillation and lepton mixing in 3-v**

$$\begin{pmatrix} V_{e} \\ V_{\mu} \\ V_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix} \begin{pmatrix} V_{1} \\ V_{2} \\ V_{3} \end{pmatrix}$$
  
Atmospheric mixing Reactor mixing & Solar mixing Majorana CP phases
$$\theta_{23} \sim 45^{\circ}, |\Delta m_{32}^{2}| \sim 2.5 \times 10^{-3} \, \text{eV}^{2} \quad \theta_{13} \sim 9^{\circ}, \ \delta_{CP} \sim ? \quad \theta_{12} \sim 34^{\circ}, |\Delta m_{21}^{2}| \sim 7.5 \times 10^{-5} \, \text{eV}^{2} \quad \alpha_{21}, \alpha_{31} \sim ?$$

Cł

13

- What is the value of  $\delta_{CP}$ ?
- Octant of  $\theta_{23}$  : > or <45°?
- Mass hierarchy: NO or IO?
- Absolute mass scale: m<sub>lightest</sub>=?
- Majorana or Dirac neutrinos?
- Why  $m_v$  so small?
- Sterile neutrino?
- Implications for BSM paradigms?
- Connections to other new physics?



#### Latest results on $\theta_{23}$ octant



• Best fit values:





Sanchez @ Neutrino 18

**NOvA** 

• Best fit:  $\sin^2\theta_{23} = 0.58 \pm 0.03$  for NO

 Prefer non-maximal at 1.8σ, exclude lower octant at similar level

#### more disfavored lower octant?

#### Latest results on $\delta_{CP}$



- CP conserving values  $\delta_{CP} = 0$ ,  $\pi$  outside  $2\sigma$  region for NO & IO
- –  $\pi < \delta_{CP} < 0$  is favored



- Best fit:  $\delta_{CP} \approx 0.17\pi$  for NO,  $\delta_{CP} \approx 1.5\pi$  for IO
- Prefer NO by 1.8 $\sigma$ , exclude  $\delta_{CP} = \pi/2$  in the IO at >  $3\sigma$

## Flavor mixing puzzle in SM





5

## Flavor mixing puzzle in SM



#### Pathways to to flavor mixing puzzle

**Anarchy** Hall, Murayama, Weiner, 99; Gouvea, Murayama, 12

 $m_{\nu} \propto \begin{pmatrix} O(1) & O(1) & O(1) \\ O(1) & O(1) & O(1) \\ O(1) & O(1) & O(1) \end{pmatrix}$ 



✓ Neutrino mass spectrum is approximately degenerate

✓ All mixing angles are generically large:  $\theta_{23}$  is non-maximal and  $\theta_{13}$  is near its upper bound

#### Flavor symmetry



#### **Discrete flavor symmetry**



## **Predictions of flavor symmetry**

• If the lepton mixing matrix is fully determined by the flavor symmetry  $G_f$  and its breaking into  $G_l$ ,  $G_v$ 

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\cos\vartheta & 1 & -\sqrt{2}\sin\vartheta \\ -\sqrt{2}\cos(\vartheta - \pi/3) & 1 & \sqrt{2}\sin(\vartheta - \pi/3) \\ -\sqrt{2}\cos(\vartheta + \pi/3) & 1 & \sqrt{2}\sin(\vartheta + \pi/3) \end{pmatrix}$$

Lindner et al.,12; Fonseca, Grimus, 14; Yao, Ding,15

✓ mixing angles:

$$\sin^2 \theta_{12} = \sec^2 \theta_{13} / 3 \simeq 0.341$$
,  $\sin^2 \theta_{23} = \frac{1}{2} \pm \frac{1}{2} \tan \theta_{13} \sqrt{2 - \tan^2 \theta_{13}} = 0.395$  or 0.605

✓ Dirac CP phase is conserved :  $sin\delta_{CP}=0$ 

✓ Extension to quark sector

$$V_{CKM} = \begin{pmatrix} \cos \theta_C & \sin \theta_C & 0 \\ -\sin \theta_C & \cos \theta_C & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \theta_C = \frac{\pi}{14}$$

Lam,07; Lindner et al.,07; Yao, Ding,15

• If the lepton mixing matrix is partially determined by the flavor symmetry  $G_f$ ,  $G_l$  and  $G_v$ , e.g.  $G_v=Z_2$ Ge, Dicus and Repko,11; Hernandez and Smirnov,12 For example, two deformations of TBM TM<sub>2</sub> TM<sub>1</sub>  $U = U_{TBM} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta e^{-i\delta} \\ 0 & -\sin\theta e^{i\delta} & \cos\theta \end{pmatrix}, \qquad \qquad U = U_{TBM} \begin{pmatrix} \cos\theta & 0 & \sin\theta e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta e^{i\delta} & 0 & \cos\theta \end{pmatrix}$ 

Two predictions in terms of sum rules



He, Zee, 07 and 11; Grimus, Lavoura, 08; Albright, Rodejohann, 09; King, Luhn 11; Xing, Zhou, 14 .....

$$3\sin^2 \theta_{12} \cos^2 \theta_{13} = 1$$
$$\sin^2 \theta_{23} \simeq \frac{1}{2} + \frac{1}{\sqrt{2}} \sin \theta_{13} \cos \delta_{CP}$$



#### • LO flavor symmetry + NLO charged lepton corrections

✓ assume a certain charged lepton correction scheme:

$$U_{PMNS} = U_e^{\dagger} \Psi U_v, \qquad U_e = R_{23}(\theta_{23}^e) R_{12}(\theta_{12}^e)$$

 $\Psi$  is a phase matrix, and  $U_{\nu}$  is tribimaximal (TBM), bimaximal (BM), golden ratio (GR) mixings or hexagonal mixing (HG).

✓ sum rule for  $\delta_{CP}$ 

 $\cos \delta_{CP} = \frac{\tan \theta_{23}}{\sin 2\theta_{12} \sin \theta_{13}} \Big[ \cos 2\theta_{12}^{\nu} + (\sin^2 \theta_{12} - \cos^2 \theta_{12}^{\nu})(1 - \cot^2 \theta_{23} \sin^2 \theta_{13}) \Big]$ 



Many contributions from Chinese physicists

Q.H.Cao, P.Chen, S.L.Chen, G.J.Ding, S.F.Ge, P.H.Gu, H.J.He, X.G.He, B.Hu, C.C.Li, G.N.Li, X.Q.Li,Y.F.Li,Y.Liao, W.Liao, C.Liu, B.Q.Ma, S.J.Rong, Y.-L.Wu, X.J.Xu, Z.Z.Xing, C.Y.Yao, F.R.Yin, H.Zhang, J.Zhang, X.Y.Zhang, Z.H. Zhao, S. Zhou, Y.L. Zhou, J.Y. Zhu .....

#### Lepton mixing from Flavor+CP symmetries

>Simplest example: $\mu\tau$  reflection = $\mu\tau$  exchange+canonical CP

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \\ v_{\tau} \\ v_{\tau} \\ v_{\mu} \\ v_{\tau} \\ v_{$$

Harrison, Scott, 02; Grimus, Lavoura, 03; Xing, Zhao, 15

Consistency condition

➤Symmetry breaking→flavor mixing



charged leptons

neutrinos

## Semi-direct approach to lepton mixing



The mixing angles and CP violating phases are predicted in terms of a single real parameter  $0 \le \theta < \pi$ . One column is fixed.

#### Possible mixing patterns from finite flavor and CP symmetries

**Only eight** kinds of mixing matrices consistent with experimental data can be obtained up to row and column permutations.

$$U^{I} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} \sin \varphi_{1} & e^{i\varphi_{2}} & \sqrt{2} \cos \varphi_{1} \\ \sqrt{2} \cos \left(\varphi_{1} - \frac{\pi}{6}\right) & -e^{i\varphi_{2}} & -\sqrt{2} \sin \left(\varphi_{1} - \frac{\pi}{6}\right) \\ \sqrt{2} \cos \left(\varphi_{1} + \frac{\pi}{6}\right) & e^{i\varphi_{2}} & -\sqrt{2} \sin \left(\varphi_{1} + \frac{\pi}{6}\right) \end{pmatrix} R_{23}(\theta) Q_{\nu}$$

$$U^{II} = \frac{1}{\sqrt{3}} \begin{pmatrix} e^{i\varphi_{1}} & 1 & e^{i\varphi_{2}} \\ \omega e^{i\varphi_{1}} & 1 & \omega^{2} e^{i\varphi_{2}} \\ \omega^{2} e^{i\varphi_{1}} & 1 & \omega e^{i\varphi_{2}} \end{pmatrix} R_{13}(\theta) Q_{\nu}$$

$$R_{ij}(\theta) \text{ is the rotation matrix in the } ij \text{ plane}$$

$$U^{III} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} e^{i\varphi_{1}} \sin \varphi_{2} & 1 & \sqrt{2} e^{i\varphi_{1}} \cos \varphi_{2} \\ \sqrt{2} e^{i\varphi_{1}} \cos \left(\varphi_{2} + \frac{\pi}{6}\right) & 1 & -\sqrt{2} e^{i\varphi_{1}} \sin \left(\varphi_{2} + \frac{\pi}{6}\right) \\ -\sqrt{2} e^{i\varphi_{1}} \cos \left(\varphi_{2} - \frac{\pi}{6}\right) & 1 & \sqrt{2} e^{i\varphi_{1}} \sin \left(\varphi_{2} - \frac{\pi}{6}\right) \end{pmatrix} R_{13}(\theta) Q_{\nu}$$

$$14$$

$$U^{W(a)} = \begin{pmatrix} -\sqrt{\frac{\phi_s}{\sqrt{5}}} & \sqrt{\frac{1}{\sqrt{5\phi_s}}} & 0\\ \sqrt{\frac{1}{2\sqrt{5\phi_s}}} & \sqrt{\frac{\phi_s}{2\sqrt{5}}} & -\frac{1}{\sqrt{2}}\\ \sqrt{\frac{1}{2\sqrt{5\phi_s}}} & \sqrt{\frac{\phi_s}{2\sqrt{5}}} & \frac{1}{\sqrt{2}} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{W(b)} = \begin{pmatrix} -i\sqrt{\frac{\phi_s}{\sqrt{5}}} & \sqrt{\frac{1}{\sqrt{5\phi_s}}} & 0\\ i\sqrt{\frac{1}{2\sqrt{5\phi_s}}} & \sqrt{\frac{\phi_s}{2\sqrt{5}}} & -\frac{1}{\sqrt{2}}\\ i\sqrt{\frac{1}{2\sqrt{5\phi_s}}} & \sqrt{\frac{\phi_s}{2\sqrt{5}}} & \frac{1}{\sqrt{2}} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{W(b)} = \begin{pmatrix} (\sqrt{3}-1)e^{i\varphi} & 2 & -(\sqrt{3}+1)e^{i\left(\varphi+\frac{3\pi}{4}\right)}\\ -(\sqrt{3}+1)e^{i\varphi} & 2 & (\sqrt{3}-1)e^{i\left(\varphi+\frac{3\pi}{4}\right)}\\ 2e^{i\varphi} & 2 & 2e^{i\left(\varphi+\frac{3\pi}{4}\right)} \end{pmatrix} R_{13}(\theta)Q_{\nu} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{WI} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -\frac{\sqrt{3}}{s_3} & 2\sqrt{2} & \frac{s_2-s_1}{s_1s_3}\\ \frac{\sqrt{3}}{s_2} & 2\sqrt{2} & -\frac{s_1+s_3}{s_1s_3}\\ \frac{\sqrt{3}}{s_1} & 2\sqrt{2} & \frac{s_2+s_3}{s_2s_3} \end{pmatrix} R_{23}(\theta)Q_{\nu}, \qquad U^{WII} = \frac{1}{2}R_{13}^{T}(\theta) \begin{pmatrix} \sqrt{2}e^{i\phi_1} & -\sqrt{2}e^{i\phi_2}\\ 1 & 1 & \sqrt{2}e^{i\phi_2}\\ 1 & 1 & \sqrt{2}e^{i\phi_2} \end{pmatrix} Q_{\nu}$$

#### **Results collected on the website**

| I(a)                 | I(b)                        | II                              | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VI                                                                                                                                                                                         | VII                                                                                                                                                                                                       | VIII                                                                                                               |  |  |
|----------------------|-----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| $U_{ m PMNS}^{I(b)}$ | $=\frac{1}{\sqrt{3}}\left($ | $\sqrt{2}$<br>$-\sqrt{2}\sin^2$ | $egin{array}{l} \cos arphi_1 \ { m n}ig(arphi_1-{ m n}ig(arphi_1-{ m n}ig(arphi_1+{ m n}ig)ig) + { m n}ig) + { m n}ig(arphi_1+{ m n}ig)ig) + { m n}ig(arphi_1+{ m n}ig) + { m n}i$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $egin{array}{c} e^i \ rac{\pi}{6} & -e \ rac{\pi}{6} & e^i \end{array}$                                                                                                                                                                      | $arphi_2 \ arphi_2 \ \sqrt{2} \ arphi_2 \ arphi_$ | $\sqrt{2}\sin arphi$<br>$\overline{2}\cos(arphi_1)$<br>$\overline{2}\cos(arphi_1)$                                                                                                         | $\left. egin{array}{c} arphi_1 \ -rac{\pi}{6} ) \ +rac{\pi}{6} \end{pmatrix}  ight)$                                                                                                                    | $S_{12}(	heta)$                                                                                                    |  |  |
| Gi                   | roup ID                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                | $(arphi_1,arphi_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2)                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                    |  |  |
| [6                   | 48,259]                     | (                               | $ \begin{pmatrix} \frac{\pi}{18}, -\frac{\pi}{6} \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, 0 \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, \frac{\pi}{3} \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, \frac{\pi}{2} \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, -\frac{\pi}{6} \end{pmatrix}, \\ \begin{pmatrix} \frac{17\pi}{18}, 0 \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, \frac{\pi}{3} \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, \frac{\pi}{2} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                    |  |  |
| [                    | 726,5]                      | $(\frac{2}{3})$                 | $ \begin{pmatrix} \frac{2\pi}{33}, -\frac{2\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, 0 \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{3\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{4\pi}{11} \end{pmatrix}, \\ \begin{pmatrix} \frac{2\pi}{33}, \frac{5\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, -\frac{2\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, 0 \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{\pi}{11} \end{pmatrix}, \\ \begin{pmatrix} \frac{31\pi}{33}, \frac{3\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{4\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{5\pi}{11} \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                    |  |  |
| [1                   | 1734,5]                     | $\left(\frac{\pi}{17}\right)$   | $(rac{3\pi}{17},-rac{8\pi}{17}),\ (rac{3\pi}{17}),\ (rac{3\pi}{17}),\ (rac{16\pi}{17},-rac{16\pi}{17},rac{3\pi}{17}),\ (rac{16\pi}{17}),\ (rac{16\pi}{17}),\$ | $\left(\frac{\pi}{17}, -\frac{6}{17}, -\frac{6}{17}, -\frac{6\pi}{17}\right), \left(\frac{16}{17}, -\frac{6\pi}{17}\right), \left(\frac{16}{17}, -\frac{6\pi}{17}\right), \left(\frac{16\pi}{17}, -\frac{16\pi}{17}, -\frac{16\pi}{17}\right)$ | $(\frac{\pi}{17}), (\frac{\pi}{17}, \frac{5\pi}{17}), (\frac{\pi}{17}, \frac{5\pi}{17}), (\frac{5\pi}{7}, 0), (\frac{1}{7}, \frac{4\pi}{17}), (\frac{1}{7})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0), $(\frac{\pi}{17}, \frac{\pi}{17}, \frac{7\pi}{17}, \frac{7\pi}{17}, \frac{16\pi}{17}, \frac{\pi}{17})$ ,<br>$\frac{16\pi}{17}, \frac{\pi}{17}$ , $\frac{16\pi}{17}, \frac{5\pi}{17}$ , | $\left(\frac{\pi}{17}\right), \left(\frac{\pi}{17}\right), \left(\frac{\pi}{17}\right), \left(\frac{16\pi}{17}, \frac{16\pi}{17}, \frac{2\pi}{17}\right), \left(\frac{16\pi}{17}, \frac{7\pi}{17}\right)$ | $\left(\frac{2\pi}{17},\frac{2\pi}{17}\right),$<br>$\left(-\frac{8\pi}{17}\right),$<br>$\left(\frac{5}{7}\right),$ |  |  |

http://staff.ustc.edu.cn/~dinggj/cp\_scan.html

#### **Results collected on the website**

| Group ID<br>[24,12]             | All of the groups are available here!                                                                                                                                                                                                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group ID                        | [24,12]                                                                                                                                                                                                                                                                                                                            |
| Structure                       | $S_4$                                                                                                                                                                                                                                                                                                                              |
| 3-Dimensional<br>Representation | $ ho(g_1) = egin{pmatrix} -1 & 0 & 0 \ 0 & 0 & -1 \ 0 & -1 & 0 \end{pmatrix},  ho(g_2) = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix},  ho(g_3) = egin{pmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{pmatrix},  ho(g_4) = egin{pmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}  ight.$ |
| Class-inverting<br>Automorphism | $u:g_1\mapsto g_1,\ g_2\mapsto g_2,\ g_3\mapsto g_3,\ g_4\mapsto g_4$                                                                                                                                                                                                                                                              |
| Generalized $CP$                | $X_0 = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                              |

http://staff.ustc.edu.cn/~dinggj/cp\_scan.html

#### **Results collected on the website**

|   | PMINS matrix predicted in semidirect approach ( $G_l$ =Abelian subgroup, $G_{ u} = Z_2$ ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                                                 |                |                         |                         |                         |                         |                         |                          |                           |                                  |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|---------------------------|----------------------------------|----------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # | Res<br>Sym.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Σ                                                                                                                  |                                                                                                                                                                 | $f_c$          | $	heta_{ m bf}$         | $\sin^2	heta_{13}$      | $\sin^2\theta_{12}$     | $\sin^2	heta_{23}$      | $\delta_{CP}/\pi$       | $lpha_{21}/\pi \pmod{1}$ | $lpha_{31}'/\pi \pmod{1}$ | $\chi^2_{ m min}$                | ио/10          | $45^{\circ}$            | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                           | $egin{pmatrix} 0.289 - 0.500i \ 0.289 + 0.500i \ -0.577 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.577<br>0.577<br>0.577                                                                                            | $\begin{pmatrix} 77 & -0.289 - 0.500i \\ 77 & -0.289 + 0.500i \\ 77 & 0.577 \end{pmatrix}$                                                                      | 2<br>2<br>2    | 0.750<br>0.500<br>0.750 | 0.167<br>0.333<br>0.167 | 0.400<br>0.500<br>0.400 | 0.200<br>0.500<br>0.200 | 0.000<br>0.500<br>0.000 | 0.000<br>0.333<br>0.000  | 0.000<br>0.667<br>0.000   | 21121.88<br>97281.18<br>17479.61 | NO<br>NO<br>IO | <<br>><br><             | ×<br>×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                                                 | 2              | 0.500<br>0.500          | 0.333<br>0.333          | 0.500<br>0.500          | 0.500<br>0.500          | 0.500<br>1.500          | 0.333<br>0.333           | 0.667<br>0.667            | 80389.49<br>97281.18             | IO<br>NO       | ~                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 | $(1_a, 1_1)$                                                                              | $\left(egin{array}{ccc} 0.289 - 0.500 i & 0.5 \ -0.577 & 0.5 \end{array} ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.577<br>0.577                                                                                                     | $\begin{array}{c} -0.289 - 0.500i \\ 0.577 \\ -0.289 + 0.500i \end{array} \right) \\ \hline \\ 0.577 \\ -0.289 - 0.500i \\ -0.289 + 0.500i \end{array} \right)$ | 2              | 0.750                   | 0.167                   | 0.400                   | 0.800                   | 1.000                   | 0.000                    | 0.000                     | 21085.67                         | NO<br>IO       | >                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                           | (0.289 + 0.500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.577                                                                                                              |                                                                                                                                                                 | 2              | 0.750                   | 0.167                   | 0.400                   | 0.800                   | 1.000                   | 0.000                    | 0.000                     | 17452.83                         | IO             | >                       | Check         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         × <tr td=""></tr> |
|   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                                                 |                |                         |                         |                         |                         |                         |                          |                           |                                  |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                           | $\begin{pmatrix} -0.577\\ 0.289 - 0.500i\\ 0.289 + 0.500i \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.577<br>0.577<br>0.577                                                                                            | 2                                                                                                                                                               | 0.192<br>0.192 | 0.022                   | 0.341<br>0.341          | 0.500                   | 1.500<br>1.500          | 0.000                   | 0.000                    | 8.84<br>12.56             | NO<br>IO                         | =              | $\overline{\checkmark}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                           | (0.289 - 0.500i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.577                                                                                                              | -0.500 + 0.289i )                                                                                                                                               | 2              | 0.000                   | 0.333                   | 0.500                   | 0.500                   | 1.500                   | 0.667                    | 0.333                     | 97281.18                         | NO             | <                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                           | $igg( egin{array}{c} 0.289 + 0.500i \ -0.577 \end{array} igg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{ccc} 0.577 & 0.500 \pm 0.289i \\ 0.577 & 0.500 \pm 0.289i \\ 0.577 & -0.577i \end{array} \right) $ | 2                                                                                                                                                               | 0.230          | 0.045                   | 0.349                   | 0.500                   | 1.500                   | 0.500                   | 0.333                    | 549.09<br>80389.49        | IO                               | <              | ×                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                                                                                                                                 | 2              | 0.250                   | 0.045                   | 0.349<br>0.349          | 0.651<br>0.349          | 1.000                   | 0.500                    | 0.000                     | 448.30<br>547.99                 | IO<br>NO       | >                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 | $(1_a, 1_2)$                                                                              | $\begin{pmatrix} 0.289 - 0.500i & 0.500i \\ -0.577 & 0.500i \\ 0.577 & 0.500i \\ 0$ | $egin{pmatrix} 0.289-0.500i & 0.577 & -0.577 & 0.577 \ 0.289+0.500i & 0.577 \ \end{pmatrix}$                       | $egin{array}{c} -0.500 + 0.289i \\ -0.577i \end{array}  ight)$                                                                                                  | 2              | 0.000                   | 0.333                   | 0.500                   | 0.500                   | 0.500                   | 0.667                    | 0.333                     | 97281.18                         | NO             | >                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                           | igl( 0.289 + 0.500 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 0.500 + 0.289i )                                                                                                                                                | 2              | 0.250                   | 0.045<br>0.333          | 0.349<br>0.500          | 0.349<br>0.500          | 0.000                   | 0.500<br>0.667           | 0.000                     | 478.65<br>80389.49               | IO<br>IO       | <                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                           | / _0.577 0.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0 577 <i>i</i>                                                                                                    | 2                                                                                                                                                               | 0.482          | 0.333                   | 0.500                   | 0.452                   | 0.482                   | 0.965                   | 0.000                    | 97280.33                  | NO                               | <              | ×                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                           | $\left(egin{array}{c} 0.289 - 0.500i \\ 0.289 + 0.500i \end{array} ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.577                                                                                                              | $\left( \begin{array}{c} -0.511i \\ -0.500 + 0.289i \\ 0.500 + 0.289i \end{array}  ight)$                                                                       | 2              | 0.000                   | 0.333<br>0.333          | 0.500<br>0.500          | 0.500                   | 1.500<br>0.500          | 0.000                    | 0.000                     | 97281.18<br>80389.49             | NO<br>IO       | >                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                                           | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |                                                                                                                                                                 | 2              | 0.529                   | 0.333                   | 0.500                   | 0.579                   | 0.529                   | 0.058                    | 0.000                     | 80384.93                         | ю              | >                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

http://staff.ustc.edu.cn/~dinggj/cp\_scan.html

Test these mixing patterns at JUNO, DUNE, Hyper-K...

#### **Benchmark examples**

For popular flavor symmetry A<sub>4</sub>, S<sub>4</sub>, A<sub>5</sub>:

$$\delta_{CP} = \pm \pi / 2, \ \theta_{23} = \pi / 4$$
 or  $\delta_{CP} = 0, \pi, \ \theta_{23} \neq \pi / 4$ 

 $\succ U^{II}$  with  $\varphi_4 = \pi/4$ ,  $\varphi_5 = 0$ 

Ding et al., 14; Hagedorn et al., 14

$$U^{II} = \frac{1}{\sqrt{3}} \begin{pmatrix} \omega^2 e^{i\pi/4} \cos \theta - \omega \sin \theta & 1 & \omega^2 e^{i\pi/4} \sin \theta + \omega \cos \theta \\ e^{i\pi/4} \cos \theta - \sin \theta & 1 & e^{i\pi/4} \sin \theta + \cos \theta \\ \omega e^{i\pi/4} \cos \theta - \omega^2 \sin \theta & 1 & \omega e^{i\pi/4} \sin \theta + \omega^2 \cos \theta \end{pmatrix}, \quad \omega \equiv e^{2\pi i/3}$$

$$\Rightarrow \begin{cases} \sin^2 \theta_{13} = \frac{1}{3} - \frac{\sqrt{3} + 1}{6\sqrt{2}} \sin 2\theta, & \sin^2 \theta_{12} = \frac{2\sqrt{2}}{4\sqrt{2} + (\sqrt{3} + 1) \sin 2\theta}, & J_{CP} = -\frac{\cos 2\theta}{6\sqrt{3}}, \\ \sin^2 \theta_{23} = \frac{1}{2} + \frac{(3 - \sqrt{3}) \sin 2\theta}{8\sqrt{2} + 2(\sqrt{3} + 1) \sin 2\theta}, & I_1 = \frac{1}{18} (1 + (\sqrt{3} - 1) \sin^2 \theta + \sqrt{2} \sin 2\theta), & I_2 = \frac{\cos 2\theta}{18} \end{cases}$$

Best fit values:

$$\theta_{bf} = 0.209\pi, \quad \chi^2_{min} = 7.960, \quad \sin^2 \theta_{12} = 0.341, \quad \sin^2 \theta_{13} = 0.0220,$$
  
$$\sin^2 \theta_{23} = 0.574, \quad \sin \delta_{CP} = -0.722, \quad \sin \alpha_{21} = 0.683, \quad \sin \alpha_{31} = -0.091.$$
 19



#### Another scheme to predict lepton mixing from flavor and CP



- All mixing angles and CP phases are expressed in terms of two free parameters θ<sub>Ly</sub> ε[0,π)
- This scheme can be extended to quark sector, and the CKM mixing matrix is of similar form

# Drastically different quark and lepton mixing angles can be explained simultaneously in the $\Delta(6n^2)$ flavor group, and $\Delta(6\cdot7^2)$ with n=7 is the smallest group.

Quark sector :

$$g_u = bc^x d^x, \quad X_u = c^{\gamma} d^{-2x-\gamma}$$
  
 $g_d = bc^{x-3} d^{x-3}, \quad X_d = c^{\gamma+2} d^{-2x-\gamma}$ 



|      | $\theta_u^{\rm bf}/\pi$ | $\theta_d^{\mathrm{bf}}/\pi$ | $\sin \theta_{12}^q$  | $\sin \theta_{23}^q$  | $\sin \theta_{13}^q$  | $J^q_{CP}$                         |
|------|-------------------------|------------------------------|-----------------------|-----------------------|-----------------------|------------------------------------|
| Our  | 0.4867                  | 0.4988                       | 0.22252               | 0.04204               | 0.00359               | $3.202 \times 10^{-5}$             |
| Data |                         |                              | $0.22497 \pm 0.00069$ | $0.04229 \pm 0.00057$ | $0.00368 \pm 0.00010$ | $(3.115 \pm 0.093) \times 10^{-5}$ |

+4

Lepton sector :

$$X_{l} = bc^{x}d^{x}, \quad X_{l} = c^{\gamma}d^{-2x-\gamma}$$
  
 $Y_{\nu} = abc^{-x+(1-3\gamma)/2}, \quad X_{\nu} = c^{\gamma}d^{1-2x-\gamma}$ 

#### Li, Lu, Ding, 17

|      | $	heta_l^{ m bf}/\pi$ | $	heta_ u^{ m bf}/\pi$ | $\chi^2_{ m min}$ | $\sin^2 	heta_{13}$         | $\sin^2 	heta_{12}$    | $\sin^2 	heta_{23}$       | $\sin \delta_{CP}$     | $ \sin \alpha_{21} $ | $ \sin \alpha_{31} $ |
|------|-----------------------|------------------------|-------------------|-----------------------------|------------------------|---------------------------|------------------------|----------------------|----------------------|
| Our  | 0.911                 | 0.0347                 | 2.416             | 0.0222                      | 0.319                  | 0.579                     | -0.802                 | 0.391                | 0.596                |
| Data |                       |                        |                   | $0.0198 \rightarrow 0.0244$ | 0.272  ightarrow 0.346 | $0.418 \rightarrow 0.613$ | $-1 \rightarrow 0.588$ | $0 \rightarrow 1$    | $0 \rightarrow 1$    |



## **Origin of neutrino masses**



$$\mathscr{L}_{5+2n}^{M} = -\frac{1}{2} \frac{g_{\alpha\beta}}{\Lambda} \left( \overline{\ell_{L\alpha}^{C}} \widetilde{H}^{*} \right) \left( \widetilde{H}^{\dagger} \ell_{L\beta} \right) \left( \frac{H^{\dagger} H}{\Lambda^{2}} \right)^{n} + \text{H.c.}$$

Tree level UV completion--- seesaw mechanism



Type-II:SM+triplet scalar Δ



Minkowski,77; Yanagida,1979; Glashow ,79; Gell-Mann, Ramond, Slansky,79; Mohapatra, Senjanovic,80

Magg, Wetterich,80; Schechter, Valle ,80; Mohapatra, Senjanovic,80

Type-III:SM+triplet fermion Σ

Weinberg,79; Babu,

Leung, 01; Liao, 10



Foot, Lew, He, Joshi, 89

>One-Loop realizations: only 4 independent topologies Bonnet, Hirsch, Ota,

Dark doublet model, Ma, 06  $H \longrightarrow H \longrightarrow H$  $H \longrightarrow L$  $H \longrightarrow L$ LLLLT1-iH

#### many, many more references ...



✓ at least 2 new multiplets required as intermediate states
 ✓ The intermediate states could be light and probed at existing facilities (the fermion singlets N<sub>R</sub> in seesaw are at the GUT scale)
 ✓ new states in the loop can be DM candidates
 ✓ Disadvantages: uniqueness of tree-level seesaw lost
 For recent review: Cai, Volkas et al., Front.in Phys.5 (2017) 63

Winter,12

If neutrinos are **Dirac** particles, the effective mass operators are

$$\mathscr{L}_{4+2n}^{D} = -y_{\alpha\beta}\overline{\ell_{L\alpha}}\widetilde{H}\nu_{R\beta}\left(\frac{H^{\dagger}H}{\Lambda^{2}}\right)^{n} + \text{H.c.}$$





Ma,Popov,16; Wang, Han,16; Yao, Ding, 17

The fermion mass hierarchy problem is worsened.(i.e., m<sub>i</sub>/m<sub>t</sub>< 10<sup>-12</sup>)



#### > Next to lowest order contribution $\rightarrow$ d=6

✓ tree level realization : 4 independent topologies



✓ One-loop realization : 6 independent topologies





## **Dirac neutrino masses at dimension five**

The effective mass operator:

Yao, Ding, 18

$$\mathscr{L}_5^D = -\frac{g_{\alpha\beta}}{\Lambda} \overline{\ell_{L\alpha}} \widetilde{H} \nu_{R\beta} S + \text{H.c.}$$

$$Z_2$$
 sym:  $v_R$ , *S* are odd





**Type-I: singlet fermion** *N* 

Type-II: doublet scalar Δ

Type-III: doublet fermion Σ



$$(m_{\nu})_{\alpha\beta} = -\frac{(Y_{\ell N})_{\alpha i}(Y_{\nu N})_{i\beta}v_{H}v_{S}}{M_{N}^{(i)}}$$

 $(m_{\nu})_{\alpha\beta} = -\frac{\mu_{\Delta}(Y_{\Delta})_{\alpha\beta}v_{H}v_{S}}{M_{\Delta}}$ 

 $(m_{\nu})_{\alpha\beta} = -\frac{(Y_{\ell\Sigma})_{\alpha i}(Y_{\nu\Sigma})_{i\beta}v_{H}v_{S}}{M_{\Sigma}^{(i)}}$ 

Gu, He,06; Bonilla, Lamprea, Peinado,Valle,17 Yao, Ding,18 ; Chuli, Srivastava, Valle,18

#### One-Loop UV completion

Yao, Ding, 18



 $\checkmark$  Messengers in the loop can be dark matter candidates

 $\checkmark$  Very rich phenomena are expected as the Majorana case

## Conclusions

- Flavor and CP symmetry is a powerful framework to understand the neutrino mixing angles and predict leptonic CP violation phases.
- □ The drastically different quark and lepton mixing patterns can be explained from the same flavor symmetry combined with CP.
- Understanding the origin of neutrino masses requires lots of theoretical and experimental efforts:
  - ✓ precise measurement of  $\theta_{23}$  and  $\delta_{CP}$ : guiding us in the search of first principles of flavor mixing
  - $\checkmark$  search for lepton number violation:  $0\nu\beta\beta$
  - ✓ search for lepton flavor violation:  $\mu$ ->e $\gamma$  and  $\mu$ -e conversion etc
  - ✓ collider experiments: directly revealing the new physics behind small neutrino masses
  - ✓ DM experiments: the connection between neutrino and DM?

# Thank you!

## Backup

#### Δ(6n<sup>2</sup>) flavor group and CP symmetry

 $\geq \Delta(6n^2)$  is a non-abelian finite subgroup of SU(3), it is isomorphic to  $(Z_n \times Z_n) \rtimes S_3$ . Its four generators satisfy:  $a^3 = b^2 = (ab)^2 = 1,$  $\int_{aca^{-1}} c^{n} = d^{n} = 1, \quad cd = dc,$  $aca^{-1} = c^{-1}d^{-1}, \quad ada^{-1} = c, \quad bcb^{-1} = d^{-1}, \quad bdb^{-1} = c^{-1}$ Familiar examples:  $\Delta(6 \times 1^2) \cong S_3$ ,  $\Delta(6 \times 2^2) \cong S_4$  $\eta \equiv e^{2\pi i/n}$ Irreducible representations : 1-dim, 2-dim, 3-dim, 6-dim  $a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad b = -\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} \eta & 0 & 0 \\ 0 & \eta^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta^{-1} \end{pmatrix}$ 

Physical CP transformations are of the same form as the flavor symmetry transformations in the chosen basis.

 $X\rho^*(g)X^{-1} = \rho(g')$ 

[Ding,King and Neder, JHEP 1412, 007 (2014) ; Hagedorn, Meroni and Molinaro, Nucl. Phys. B 891, 499 (2015)]

#### Mass sum rules:



King, Merle, Stuart, 13

**Mixing sum rules:** 



Petcov, Girardi, Titov, 15



 $\omega$ 

ω

 $\omega$ 

 $\succ$ 

35

 $\omega_{\blacktriangle}$ 

 $\omega^2_{\blacktriangle}$ 

 $\omega_{\blacktriangle}$ 

1

1

ω

 $\omega$ 

 $\omega^2_{\blacktriangle}$ 

 $\omega^2$ 

X

X

 $\omega^2_{\blacktriangle}$ 

 $\overline{\omega^2}$ 

 $\omega^2_{\blacktriangle}$ 

 $\omega_{\blacktriangle}$ 

 $\omega^2$ 

 $\omega^2$ 

1

1



$$\begin{split} S_4: \quad &\mathbf{1}\otimes R=R\otimes \mathbf{1}=R, \quad \mathbf{1}'\otimes \mathbf{1}'=\mathbf{1}, \quad \mathbf{1}'\otimes \mathbf{2}=\mathbf{2}, \quad \mathbf{1}'\otimes \mathbf{3}=\mathbf{3}', \quad \mathbf{1}'\otimes \mathbf{3}'=\mathbf{3}, \\ &\mathbf{2}\otimes \mathbf{2}=\mathbf{1}\oplus \mathbf{1}'\oplus \mathbf{2}, \quad \mathbf{2}\otimes \mathbf{3}=\mathbf{2}\otimes \mathbf{3}'=\mathbf{3}\oplus \mathbf{3}', \\ &\mathbf{3}\otimes \mathbf{3}=\mathbf{3}'\otimes \mathbf{3}'=\mathbf{1}\oplus \mathbf{2}\oplus \mathbf{3}\oplus \mathbf{3}', \quad \mathbf{3}\otimes \mathbf{3}'=\mathbf{1}'\oplus \mathbf{2}\oplus \mathbf{3}\oplus \mathbf{3}', \end{split}$$

|            | T0               |         |           | T3-6-1-A       |                |                |                  |                | F2             | 2-3-1-A                 | F2-3-2-A    |          |  |
|------------|------------------|---------|-----------|----------------|----------------|----------------|------------------|----------------|----------------|-------------------------|-------------|----------|--|
| Fields     | $\ell_L$         | $\nu_R$ | H         | $ \psi $       | $ \Psi $       | $\phi$         | $\varphi$        | $\Phi$         | $\psi'$        | $\phi'$                 | $\psi''$    | $\phi''$ |  |
| Gauge Sym. | $  2_{-1}^{F}  $ | $1_0^F$ | $ 2_1^S $ | $ 1^F_{lpha} $ | $ 3_{-2}^{F} $ | $ 1^S_{lpha} $ | $3_{lpha+2}^{S}$ | $ 3_{-2}^{S} $ | $ 3_{-2}^{F} $ | $3_2^S$                 | $1_{0}^{F}$ | $1_0^S$  |  |
| $S_4$ Sym. | 3                | 3′      | 1         | 3'             | 3              | 3              | 3                | 1              | 3              | <b>1</b> (or <b>3</b> ) | 3′          | 3        |  |