Strong Decays of the Orbitally Excited Scalar D_{0}^{*} Mesons

Xiao-Ze Tan ${ }^{1}$, Tianhong Wang ${ }^{1}$, Yue Jiang ${ }^{1}$, Si-Chen Li ${ }^{1}$, Qiang Li ${ }^{1,3}$, Guo-Li Wang ${ }^{1}$, Chao-Hsi Chang ${ }^{2,3}$
${ }^{1}$ Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
${ }^{2}$ CCAST(World Laboratory), P.O. Box 8730, Beijing 100080, People's Republic of China
${ }^{3}$ Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, People's Republic of China

Introduction

In this work, We calculate the two-body strong decays of the orbitally excited scalar mesons $D_{0}^{*}(2400)$ and $D_{J}^{*}(3000)$.
The LHCb collaboration announced several new charmed structures in 2013, including the $D_{J}^{*}(3000)$ [1]

$$
\begin{align*}
M_{D_{J}^{*}(3000)} & =3008.1 \pm 4.0 \mathrm{MeV} \tag{1}\\
\Gamma_{D_{J}^{*}(3000)} & =110.5 \pm 11.5 \mathrm{MeV}
\end{align*}
$$

Its parity is still uncertain in present experiments. From its decay mode of $D \pi$, many authors treat it as a natural parity particle. Considering that its mass is around 3000 MeV , the assignments of $2^{3} P_{0}, 1^{3} F_{4}, 3^{3} S_{1}, 1^{3} F_{2}$ and $2^{3} P_{2}$ are possible.
The $D^{*} \pi$ channel is forbidden for the ${ }^{3} P_{0}$ states and other assignments have both $D \pi$ and $D^{*} \pi$ decay modes. However, $D_{J}(3000)$ was only found in $D^{*} \pi$ spectrum, while $D_{J}^{*}(3000)$ only in $D \pi$ spectrum in LHCb experiment. Thus, the assignment of $2^{3} P_{0}$ for $D_{J}^{*}(3000)$ is more reasonable.

Method

We take the channel $D_{0}^{*}(2400)^{0} \rightarrow D^{+} \pi^{-}$as an example.

Figure 1: Feynman diagram for $D_{0}^{e}(2400)^{0} \rightarrow D^{+} \pi^{-}$(with the low-energy
approximation).
By using the reduction formula, the transition matrix element can be written as

$$
\begin{align*}
T & =\left\langle D^{+}\left(P_{f 1}\right) \pi^{-}\left(P_{f 2}\right) \mid D_{0}^{*}\left(P_{i}\right)\right\rangle \\
& =\int \mathrm{d}^{4} x \mathrm{e}^{\mathrm{i} P_{f 2} \cdot x}\left(M_{f 2}^{2}-P_{f 2}^{2}\right)\left\langle D^{+}\left(P_{f 1}\right)\right| \phi_{\pi}(x)\left|D_{0}^{*}\left(P_{i}\right)\right\rangle \tag{2}
\end{align*}
$$

where, ϕ_{π} is the light pseudo-scalar meson field. By using PCAC rules, the field can be expressed as

$$
\begin{equation*}
\phi_{\pi}(x)=\frac{1}{M_{f 2}^{2} f_{\pi}} \partial^{\mu}\left(\bar{u} \gamma_{\mu} \gamma_{5} d\right) \tag{3}
\end{equation*}
$$

Inserting Eq. (3) into Eq. (2), the transition matrix can be written as

$$
\begin{align*}
T & =\frac{-\mathrm{i} P_{f 2}^{\mu}\left(M_{f 2}^{2}-P_{f 2}^{2}\right)}{M_{f 2} f_{\pi}} \int \mathrm{d}^{4} x \mathrm{e}^{i P_{f 2} \cdot x}\left\langle D^{+}\left(P_{f 1}\right)\right| \bar{u} \gamma_{\mu} \gamma_{5} d\left|D_{0}^{*}\left(P_{i}\right)\right\rangle \tag{4}\\
& \approx-\mathrm{i} \frac{P_{f 2}^{\mu}}{f_{\pi}}(2 \pi)^{4} \delta^{4}\left(P_{i}-P_{f 1}-P_{f 2}\right)\left\langle D^{+}\left(P_{f 1}\right)\right| \bar{u} \gamma_{\mu} \gamma_{5} d\left|D_{0}^{*}\left(P_{i}\right)\right\rangle
\end{align*}
$$

Within the Mandelstam formalism, we can write the transition amplitude as:

$$
\begin{align*}
\mathcal{M} & =-\mathrm{i} \frac{P_{f 2}^{\mu}}{f_{\pi}}\left\langle D^{+}\left(P_{f 1}\right)\right| \bar{u} \gamma_{\mu} \gamma_{5} d\left|D_{0}^{*}\left(P_{i}\right)\right\rangle \tag{5}\\
& =-i \frac{P_{f 2}^{\mu}}{f_{\pi}} \int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \operatorname{Tr}\left[\bar{\varphi}_{P_{f 1}}^{++}\left(q_{f 1 \perp}\right) \frac{P_{i}}{M_{i}} \varphi_{P_{i}}^{++}\left(q_{\perp}\right) \gamma_{\mu} \gamma_{5}\right]
\end{align*}
$$

If ρ or ω meson appears in the final states, we choose the effective Lagrangian method to calculate the transition amplitude. The Lagrangian of quark-meson coupling can be expressed as

$$
\begin{equation*}
\mathcal{L}_{q q V}=\bar{q}_{i}\left(a \gamma_{\mu}+\frac{\mathrm{i} b}{2 M_{P_{f 2}}} \sigma_{\mu \nu} P_{f 2}^{v}\right) V_{i j}^{\mu} q_{j} \tag{6}
\end{equation*}
$$

The transition amplitudes can be expressed as

$$
\begin{equation*}
\mathcal{M}=-\mathrm{i} \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \operatorname{Tr}\left[\bar{\varphi}_{P_{f 1}}^{++}\left(q_{f 1 \perp}\right) \frac{P_{i}}{M_{i}} \varphi_{P_{i}}^{++}\left(q_{\perp}\right)\left(a \gamma_{\mu}+\frac{\mathrm{i} b}{2 M_{f 2}} \sigma_{\mu \nu} P_{f 2}^{v}\right) \varepsilon_{2}^{\mu}\right] \tag{7}
\end{equation*}
$$

The two-body decay width is

$$
\begin{equation*}
\Gamma=\frac{1}{8 \pi} \frac{\left|\vec{P}_{f 1}\right|}{M_{i}^{2}}|\mathcal{M}|^{2} \tag{8}
\end{equation*}
$$

Results and Discussion

The results of $D_{0}^{*}(2400)^{0,+}$ as $0^{+}(1 P)$ state are shown in Table 1 . Under the assumption of $0^{+}(2 P)$ state, the results of $D_{0}^{*}(3000)^{0,+}$ are shown in Table 2-3. Considering many theoretical predictions of mass have divergence with present experimental data, we also calculate the total width changing with the mass, which is shown in Fig. 2.

Table 1: $D_{0}^{*}(2400)^{0,+}$ strong decay widths (MeV).

Chanel	Ours	Ref. [2]	Ref. [3]	Ref. [4]	Exp. [5]	
$D_{0}^{*}(2400)^{0} \rightarrow$$D^{+} \pi^{-}$ $D^{0} \pi^{0}$	151.5	74.8	266	283	277	267 ± 40
$D^{+} \pi^{0}$	81.6					
$D_{0}^{*}(2400)^{+} \rightarrow$ $D^{0} \pi^{+}$ 164.3	\square	\square	\square	230 ± 17		

Table 2: Two-body strong decay widths (MeV) of $D_{J}^{*}(3000)^{0}$ as the $2 P\left(0^{+}\right)$state. "-" means forbidden, "口" means not included.

Chanel	Final States	Ours	Ref. [6]	Ref. [7]	Ref. [8]	Ref. [9]
$D\left({ }^{1} S_{0}\right) \pi$	$D^{+} \pi^{-}$	11.6	23.94	49	25.4	66.2
	$D^{0} \pi^{0}$	6.1	11.97			33.3
$\boldsymbol{D}\left(2^{1} \boldsymbol{S}_{0}\right) \boldsymbol{\pi}$	$D(2550)^{+} \pi^{-}$	6.9	\square	\square	18.6	\square
	D (2550)					
$D \eta$	$D^{0} \eta^{0}$	0.51	4.26	8.8	1.53	10.8
$D \eta^{\prime}$	$D^{0} \eta^{\prime 0}$	6.0	1.07	2.7	4.94	\square
$D_{s} K$	$D_{s}^{+} K^{-}$	$\sim 10^{-3}$	2.85	6.6	0.76	54.2
$D_{1}(2420) \pi$	$D_{1}(2420)^{0} \pi^{0}$	18.7	26.20	38	96.1 $\left({ }^{1} P_{1}\right)$	\square
$D_{1}(2420) \eta$	$D_{1}(2420)^{0} \eta^{0}$	0.85	1.37	1.1	\square	\square
$D_{1}(2430) \pi$	$D_{1}(2430)^{0} \pi^{0}$ $D_{1}(2430$${ }^{+} \pi^{-}$	2.1	6.69	30	\square	\square
	$D_{1}(2430)^{+} \pi^{-}$ $D_{1}(2430)^{0} \eta^{0}$	4.1	\square 0.35	0.91	\square	\square
$D_{s}(2460) K$	$D_{s 1}(2460)^{+} K^{-}$	1.2	0.35 12.81	0.91 1.5	\square	\square
$D^{*} \rho$	$\begin{aligned} & D^{*}(2007)^{0} \rho^{0} \\ & D^{*}(2010)^{+} \rho^{-} \end{aligned}$	$\begin{gathered} 7.0 \\ 13.3 \end{gathered}$	$\begin{aligned} & 31.60 \\ & 62.01 \end{aligned}$	41	32	\square
$D^{*} \omega$	$D^{*}(2007)^{0} \omega^{0}$	7.5	29.91	13	10.2	\square
$D_{s}^{*} K^{*}$	$D_{s}^{*+} K^{*}(892)^{-}$	4.1	3.06	1.0	\square	\square
$D_{s}(2536) K^{-}$	$D_{s 1}(2536)^{+} K^{-}$	-	6.40	-	-	-
TotalExperimental value		130.2	224.5	193.6	189.5	164.5
			110.5 ± 11.5			

Table 3: Two-body strong decay widths (MeV) of $D_{J}^{*}(3000)^{+}$as the $2 P\left(0^{+}\right)$state.

Chanel	Final States	Width	Chanel	Final States	Width		
$D\left({ }^{1} S_{0}\right) \boldsymbol{\pi}$	$D^{+} \pi^{0}$	6.5	$D\left(2^{1} S_{0}\right) \pi$	$D^{0} \pi^{+}$	3.8		
$D \eta$	$D^{0} \pi^{+}$	13.5	$D^{0} \pi^{+}$	7.7			
	$D^{0} \eta^{0}$	0.56	$D \eta^{\prime}$	$D^{0} \eta^{\prime 0}$	5.7		
$D(2420) \pi$	$D_{1}(2420)^{+} \pi^{0}$	18.3	$D(2430) \pi$	$D_{1}(2430)^{+} \pi^{0}$	2.1		
$D(2420) \eta$	$D_{1}(2420)^{0} \pi^{+}$	37.4	$D_{1}(2430)^{0} \pi^{+}$	4.3			
$D^{*} \rho$	$D_{1}(2420)^{+} \eta^{0}$	0.77	$D(2430) \eta$	$D_{1}(2430)^{+} \eta^{0}$	0.11		
$D_{s} K$	$D^{*}(2010)^{+} \rho^{0}$	6.1	$D^{*} \omega$	$D^{*}(2010)^{+} \omega^{0}$	6.5		
	$D^{*}(2007)^{0} \rho^{-}$	12.9	$D_{s}(2460) K$	$D_{s 1}(2460)^{+} K^{0}$	1.2		
	$D_{s}^{+} K^{0}$	0.05	$D_{s}^{*} K^{*}$	$D_{s}^{*+} K^{*}(892)^{0}$	3.8		
	Total		131.3				

References

[1] R. Aaij et al. JHEP, 2013, 145, Sep 2013.
[2] Xian-Hui Zhong and Qiang Zhao. Phys. Rev. D, 78, 014029, Jul 2008.
[3] F. E. Close and E. S. Swanson. Phys. Rev. D, 72, 094004, Nov 2005.
[4] Stephen Godfrey. Phys. Rev. D, 72, 054029, Sep 2005.
[5] C. Patrignani et al. Chin. Phys. C, 40, 100001, 2016.
[6] Guo-Liang Yu, Zhi-Gang Wang, Zhen-Yu Li, and Gao-Qing Meng. Chin. Phys. C, 39, 063101, 2015.
[7] Yuan Sun, Xiang Liu, and Takayuki Matsuki. Phys. Rev. D, 88, 1, 2013.
[8] Stephen Godfrey and Kenneth Moats. Phys. Rev.D, 93, 1, 2016.
[9] Pallavi Gupta and A. Upadhyay. Phys. Rev., D97, 014015, 2018.

