Strong Decays of the Orbitally Excited Scalar D_0^* Mesons

Xiao-Ze Tan¹, Tianhong Wang¹, Yue Jiang¹, Si-Chen Li¹, Qiang Li^{1,3}, Guo-Li Wang¹, Chao-Hsi Chang^{2,3}

¹Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China ²CCAST(World Laboratory), P.O. Box 8730, Beijing 100080, People's Republic of China ³Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, People's Republic of China

CHEP 2018

Introduction

In this work, We calculate the two-body strong decays of the orbitally excited scalar mesons $D_0^*(2400)$ and $D_I^*(3000)$.

The LHCb collaboration announced several new charmed structures in 2013, including the $D_I^*(3000)$ [1]

$$M_{D_J^*(3000)} = 3008.1 \pm 4.0 \text{ MeV},$$

 $\Gamma_{D_J^*(3000)} = 110.5 \pm 11.5 \text{ MeV}.$ (1)

Its parity is still uncertain in present experiments. From its decay mode of $D\pi$, many authors treat it as a natural parity particle. Considering that

Results and Discussion

The results of $D_0^*(2400)^{0,+}$ as $0^+(1\mathbf{P})$ state are shown in Table 1. Under the assumption of $0^+(2\mathbf{P})$ state, the results of $D_0^*(3000)^{0,+}$ are shown in Table 2-3. Considering many theoretical predictions of mass have divergence with present experimental data, we also calculate the total width changing with the mass, which is shown in Fig. 2.

Table 1: $D_0^*(2400)^{0,+}$ strong decay widths (MeV).

Chanel	Ours	Ref. [2]	Ref. [3]	Ref. [4]	Exp. [5]
$D_0^*(2400)^0 \to \frac{D^+\pi^-}{D^0\pi^0}$	151.5 74.8	266	283	277	267 ± 40
$D^*(2400)^+ \rightarrow D^+\pi^0$	81.6			-	230 ± 17

its mass is around 3000 MeV, the assignments of 2^3P_0 , 1^3F_4 , 3^3S_1 , 1^3F_2 and $2^{3}P_{2}$ are possible.

The $D^*\pi$ channel is forbidden for the 3P_0 states and other assignments have both $D\pi$ and $D^*\pi$ decay modes. However, $D_J(3000)$ was only found in $D^*\pi$ spectrum, while $D^*_I(3000)$ only in $D\pi$ spectrum in LHCb experiment. Thus, the assignment of $2^{3}P_{0}$ for $D_{I}^{*}(3000)$ is more reasonable.

Method

We take the channel $D_0^*(2400)^0 \rightarrow D^+\pi^-$ as an example.

$D_{0}(2400)$, $D^0\pi^+$	164.3				200 ± 11	
---------------	--------------	-------	--	--	--	--------------	--

Table 2: Two-body strong decay widths (MeV) of $D_I^*(3000)^0$ as the $2P(0^+)$ state. "-" means forbidden, " \Box " means not included.

Chanel	Final States	Ours	Ref. [6]	Ref. [7]	Ref. [8]	Ref. [9]
$oldsymbol{D}(^1oldsymbol{S}_0)oldsymbol{\pi}$	$egin{array}{c} D^+\pi^- \ D^0\pi^0 \end{array}$	11.6 6.1	23.94 11.97	49	25.4	66.2 33.3
$oldsymbol{D}(2^1 oldsymbol{S}_0)oldsymbol{\pi}$	$D(2550)^{+}\pi^{-}$ $D(2550)^{0}\pi^{0}$	6.9 3.3			18.6	
$D\eta$ $D\eta'$ D_sK	$D^0 \eta^0 D^0 \eta'^0 D^+_s K^-$	0.51 6.0 $\sim 10^{-3}$	4.26 1.07 2.85	8.8 2.7 6.6	1.53 4.94 0.76	10.8 □ 54.2
$D_1(2420)\pi$	$egin{array}{llllllllllllllllllllllllllllllllllll$	18.7 36.8	26.20 □	38	96.1 $(^{1}P_{1})$	
$\boldsymbol{D}_1(2420)\boldsymbol{\eta}$	$D_1(2420)^0\eta^0$	0.85	1.37	1.1		
$D_1(2430)\pi$	$egin{array}{llllllllllllllllllllllllllllllllllll$	2.1 4.1	6.69 □	30		
$D_1(2430)\eta$	$D_1(2430)^0 \eta^0$	0.12	0.35	0.91		
$D_{s}(2460)K$	$D_{s1}(2460)^+K^-$	1.2	12.81	1.5		
$D^* ho$	$D^*(2007)^0 ho^0$ $D^*(2010)^+ ho^-$	7.0 13.3	31.60 62.01	41	32	
$D^*\omega$	$D^{*}(2007)^{0}\omega^{0}$	7.5	29.91	13	10.2	
$D_s^*K^*$	$D_{s}^{*+}K^{*}(892)^{-}$	4.1	3.06	1.0		
$D_{s}(2536)K^{-}$	$D_{s1}(2536)^+K^-$	-	6.40	-	-	-
T Experime	otal ental value	130.2	224.5 110.5	193.6 ± 11.5	189.5	164.5

By using the reduction formula, the transition matrix element can be written as

where, ϕ_{π} is the light pseudo-scalar meson field. By using PCAC rules, the field can be expressed as

$$\phi_{\pi}(x) = \frac{1}{M_{f2}^2 f_{\pi}} \partial^{\mu}(\overline{u}\gamma_{\mu}\gamma_5 d).$$
(3)

Inserting Eq. (3) into Eq. (2), the transition matrix can be written as $T = \frac{-iP_{f2}^{\mu}(M_{f2}^{2} - P_{f2}^{2})}{M_{f2}f_{\pi}} \int d^{4}x e^{iP_{f2}\cdot x} \langle D^{+}(P_{f1}) \left| \overline{u}\gamma_{\mu}\gamma_{5}d \right| D_{0}^{*}(P_{i}) \rangle$ $\approx -i\frac{P_{f2}^{\mu}}{f_{\pi}}(2\pi)^{4} \delta^{4}(P_{i} - P_{f1} - P_{f2}) \langle D^{+}(P_{f1}) \left| \overline{u}\gamma_{\mu}\gamma_{5}d \right| D_{0}^{*}(P_{i}) \rangle.$ (4)

Within the Mandelstam formalism, we can write the transition amplitude as: nμ

$$\mathcal{M} = -i \frac{P_{f2}^{\mu}}{f_{\pi}} \langle D^{+}(P_{f1}) \left| \overline{u} \gamma_{\mu} \gamma_{5} d \right| D_{0}^{*}(P_{i}) \rangle$$

$$= -i \frac{P_{f2}^{\mu}}{f_{\pi}} \int \frac{\mathrm{d}^{3} q}{(2\pi)^{3}} \mathrm{Tr} \left[\overline{\varphi}_{P_{f1}}^{++}(q_{f1\perp}) \frac{\not{P}_{i}}{M_{i}} \varphi_{P_{i}}^{++}(q_{\perp}) \gamma_{\mu} \gamma_{5} \right].$$
(5)

Table 3: Two-body strong decay widths (MeV) of $D_I^*(3000)^+$ as the $2P(0^+)$ state.

Chanel	Final States	Width	Chanel	Final States	Width
$D(1\mathbf{C}) =$	$D^+\pi^0$	6.5	$oldsymbol{D}(2^1 oldsymbol{S}_0)oldsymbol{\pi}$	$D^0\pi^+$	3.8
$D(S_0)\pi$	$oldsymbol{D}^0 oldsymbol{\pi}^+$	13.5		$D^0\pi^+$	7.7
$D\eta$	$oldsymbol{D}^0oldsymbol{\eta}^0$	0.56	$D\eta'$	$oldsymbol{D}^0oldsymbol{\eta'}^0$	5.7
D(9490) -	$D_1(2420)^+\pi^0$	18.3	D(9420) -	$D_1(2430)^+\pi^0$	2.1
$D(2420)\pi$	$D_1(2420)^0\pi^+$	37.4	$D(2430)\pi$	$D_1(2430)^0\pi^+$	4.3
$D(2420)\eta$	$D_1(2420)^+\eta^0$	0.77	$D(2430)\eta$	$D_1(2430)^+\eta^0$	0.11
D^* o	$D^{*}(2010)^{+} ho^{0}$	6.1	$D^*\omega$	$D^*(2010)^+\omega^0$	6.5
Dρ	$D^{*}(2007)^{0} ho^{-}$	12.9	$D_{s}(2460)K$	$D_{s1}(2460)^+K^0$	1.2
$D_s K$	$D_s^+ K^0$	0.05	$D_s^*K^*$	$D_s^{*+}K^{*}(892)^{0}$	3.8
	Total		131	3	

If ρ or ω meson appears in the final states, we choose the effective Lagrangian method to calculate the transition amplitude. The Lagrangian of quark-meson coupling can be expressed as

$$\mathcal{L}_{qqV} = \bar{q}_i (a\gamma_\mu + \frac{\mathrm{i}b}{2M_{P_{f2}}} \sigma_{\mu\nu} P^{\nu}_{f2}) V^{\mu}_{ij} q_j.$$

The transition amplitudes can be expressed as

$$\mathcal{M} = -\mathrm{i} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \mathrm{Tr} \left[\overline{\varphi}_{P_{f1}}^{++}(q_{f1\perp}) \frac{\not{P}_i}{M_i} \varphi_{P_i}^{++}(q_\perp) (a\gamma_\mu + \frac{\mathrm{i}b}{2M_{f2}} \sigma_{\mu\nu} P_{f2}^{\nu}) \varepsilon_2^{\mu} \right]. \quad (7)$$

The two-body decay width is

$$\Gamma = \frac{1}{8\pi} \frac{|\vec{P}_{f1}|}{M_i^2} |\mathcal{M}|^2.$$

Figure 2: Total decay widths of $D_0^*(2400)$ and $D_I^*(3000)$ change with the masses.

References [1] R. Aaij *et al. JHEP*, 2013, 145, Sep 2013. [2] Xian-Hui Zhong and Qiang Zhao. Phys. Rev. D, 78, 014029, Jul 2008. [3] F. E. Close and E. S. Swanson. *Phys. Rev. D*, 72, 094004, Nov 2005. [4] Stephen Godfrey. Phys. Rev. D, 72, 054029, Sep 2005. [5] C. Patrignani et al. Chin. Phys. C, 40, 100001, 2016. [6] Guo-Liang Yu, Zhi-Gang Wang, Zhen-Yu Li, and Gao-Qing Meng. Chin. Phys. C, 39, 063101, 2015. [7] Yuan Sun, Xiang Liu, and Takayuki Matsuki. *Phys. Rev. D*, 88, 1, 2013. [8] Stephen Godfrey and Kenneth Moats. *Phys. Rev.D*, 93, 1, 2016. [9] Pallavi Gupta and A. Upadhyay. *Phys. Rev.*, D97, 014015, 2018.

(6)

(8)

