Observation of ttH Production with the ATLAS Detector

Lianliang MA(马连良) Shandong University

June 20-24, 2018@Shanghai

Outline

- Introduction
- Search for ttH production at ATLAS

✓ ttH, H→ γ γ with 79.1 fb⁻¹

✓ ttH, H→ZZ* with 79.1 fb⁻¹

✓ ttH, H→bb with 36.1 fb⁻¹

Phys. Rev. D **97**, 072016 (2018)

arXiv:1806.00425

• Combined results and summary

Higgs Production at LHC

- ♦ 87.2%: gluon-gluon fusion (ggF)
- \diamond 6.8%: vector boson fusion (VBF)
- ♦ 4.1%: WH/ZH

♦ 0.9%: ttH

- Observed modes: ggF and VBF
- ♦ Cross sections increases from Run I

to Run II by a factor of 3.9 for ttH

Higgs Boson Decays

 $\gamma\gamma$, ZZ*, WW*, $\tau\tau$ observed in Run I (significance >5σ)

In order to maximize the analysis sensitivity, all possible Higgs decay modes of bb, WW*, γγ, ZZ*, π are analyzed in searching for ttH process.

Importance of ttH:

- Establish one of the main Higgs production modes
- Direct measurement of Higgs coupling to top quark, the heaviest particle in SM

ATLAS Detector

Data Collected by ATLAS

Evolution of ttH results from ATLAS experiment:

- \Rightarrow Run I (20.3 fb⁻¹): 2.5 σ (1.5 σ expected)
- ↔ Run I + Run II (36.1 fb⁻¹): 4.2 σ (3.8 σ expected)

Eur. Phys. J. C (2016) 76:6

Phys. Rev. D 97, 072003 (2018)

 \diamond Run I + Run II up to 78.1 b⁻¹: observation in this talk

 \prod

Run: 310634 Event: 1515766987 2016-10-15 01:49:14 CEST

ttH, H \rightarrow yy: Analysis Overview

- Small rate, but Higgs signal as a narrow peak
- > Leptonic ($\geq 1\ell$) and hadronic (0ℓ) categories based on ttbar decay
- BDT training ttH (MC) from the main backgrounds: γγ/ttγγ (Control Regions), and other Higgs (MC)
- Further categorization on selected events with high BDT score: 3/4 bins for the leptonic/ hadronic category, based on expected sensitivity optimization
- 50% improvement in sensitivity: changes in analysis strategy and update to ATLAS software

ttH, $H \rightarrow \gamma \gamma$: Event Yield

	Expected						Observed		
Bin	<i>ttH</i> (signal)		Non- <i>tīH</i> Higgs		Non-Higgs		Total		Total
$H o \gamma \gamma$									
Had 1	4.2	± 1.1	0.49	± 0.33	1.8	± 0.5	6.4	±1.3	10
Had 2	3.4	± 0.7	0.7	± 0.6	7.5	± 1.1	11.6	± 1.5	14
Had 3	4.7	± 0.9	2.0	± 1.7	32.9	± 2.2	39.6	± 3.2	47
Had 4	3.0	± 0.5	3.2	± 3.1	55.0	± 2.8	61	± 5	67
Lep 1	4.5	± 1.0	0.24	± 0.09	2.2	± 0.6	6.9	± 1.2	7
Lep 2	2.2	± 0.4	0.27	± 0.10	4.6	± 0.9	7.1	± 1.0	7
Lep 3	0.82	± 0.18	0.30	± 0.13	4.6	± 0.9	5.7	± 0.9	5

2018/06/20-24

Lianliang Ma (Shandong U.)

ttH, H→γγ: Result

Simultaneous unbinned fit performed on m_{γγ} spectra (105-160 GeV) in all 7 categories

Signal with double-sided Crystal Ball function

2.5 GeV

Sum of Weights /

35

30

25

20

15

10

5

110

120

130

150

160

m_{yy} [GeV]

140

ttH, $H \rightarrow ZZ^*$: Analysis Overview

- Hadronic region: 4-lep + >=1b-jet + >=3j + additional lepton veto
- Leptonic region: 4-lep + >=1b-jet + >=1jv+ >= 1 lepton
- Final fit to the event yields in 2 hadronic BDT bins and 1 leptonic region with 4-lep mass window of 115 GeV < m4l <135 GeV</p>

ttH, H→ZZ*: Analysis Result

- The expected significance is 1.2 σ
- No event is observed
- More statistics needed for this analysis

ttH in multi-lepton: Analysis Overview

- Signals mainly from $H \rightarrow WW^*$ and $H \rightarrow \tau\tau$, small from $H \rightarrow ZZ^*$
- Signature: 2-4 leptons (τ_{had}), >= 2-jets and >= 1 b-jet
- Main backgrounds: ttW/ttZ from MC but validated to data,

non-prompt bkg. (mainly ttbar) is data-driven

• Dominant syst.: estimations for fake lepton and non-prompt bkg.

ttH in multi-lepton: 8 SRs

Signal extracted by a binned fit to all categories: 8 signal regions as below, and 4 control regions (ttZ, ttW, di-boson, ttbar in 3-lep)

2018/06/20-24

Lianliang Ma (Shandong U.)

ttH in multi-lepton: Results

- ➢ Signal strength: 1.6^{+0.5}_{-0.4}
- > Significance: 4.1σ (expected 2.8 σ)
- Dominant systematics:
 - ttH modelling (+0.20, -0.09)
 - Jet energy scale/resolution (+0.18, -0.15)
 - Non-prompt e/μ (+0.15, -0.13), limited stats.

ttH candidate evt. ee0τ_{had}+ 3 b-jets + 6 l-jets

Run: 300571 Event: 905997537 2016-05-31 12:01:03 CEST

ttH, H→bb

- Events categorized based on leptons, n-jets, b-tag score of jets: 9 signal regions + 10 control regions
- Main bkg.: tt+heavy flavour, difficult to predict from MC

2018/06/20-24

Lianliang Ma (Shandong U.)

ttH, H→bb

- The simultaneous fit to the discriminant distributions from all categories: BDT in signal regions, total event yields in CRs except 2 CRs for tt + ≥1c in 5j and 6j ((H_T^{had}: scalar sum of jet pt)
- > Significance: 1.4 σ (expected 1.6 σ)
- ➤ Systematically limited, and dominant syst.: signal and bkg. modeling, JES, btagging, such as tt+≥1b modeling (±0.46 on mu)

ttH Combined Results

ATLAS		Stat. Syst.	Significance		
$\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$ Total Stat. Syst.				obs.	exp.
tīH (bb)		$0.79 \pm {}^{0.61}_{0.60}$ ($\pm {}^{0.29}_{0.28}$,	± 0.53)	1.6σ	1.4σ
tīH (multilepton)		$1.56 \pm {}^{0.42}_{0.40}$ ($\pm {}^{0.30}_{0.29}$,	± 0.30)	4.1σ	2.8σ
tīH (γγ)		1.39 ± $^{0.48}_{0.42}$ (± $^{0.42}_{0.38}$, :	± 0.23)	4.1σ	3.8σ
tīH (ZZ) 🖌	_	< 1.77 at 68% CL		0 σ	1.2σ
Combined	H I	$1.32 \pm {}^{0.28}_{0.26}$ (± 0.18 ,	$\pm \frac{0.21}{0.19}$)	5.8σ	4.9σ
-1 0	1 2	3	<u> </u>		
	· _	σ_{t}	$_{\rm tH}^{\rm SM}/\sigma_{\rm ttH}^{\rm SM}$		

Observation of ttH production with 13 TeV dataset only
 6.3 σ with combination with Run I data (5.1 σ expected)

ttH Combined Results

$$\sigma_{t\bar{t}H}(13TeV) = 670 \pm 90(stat.)_{-100}^{+100}(sys.)fb$$

$$\sigma_{t\bar{t}H,SM}(13TeV) = 507 \pm_{-50}^{+35}(sys.)fb$$

Summary

- Observation of ttH production with a significance of 6.3 σ
 (expected 5.1 σ)
- ♦ Signal strength: $1.32 \pm 0.18(stat.)^{+0.21}_{-0.19}(sys.)$, higher than the SM prediction, but compatible at 1σ level

Thanks!

Higgs Production

ttH, $H \rightarrow \gamma \gamma$: Mass Spectrum

Unweighted

Weighted

2018/06/20-24

Lianliang Ma (Shandong U.)

Event Selection in ttH, multi-lepton

Channel	Selection criteria				
Common 2£SS	$N_{\text{jets}} \ge 2$ and $N_{b\text{-jets}} \ge 1$ Two very tight light leptons with $p_{\text{T}} > 20$ GeV Same-charge light leptons Zero medium τ_{had} candidates $N_{\text{jets}} \ge 4$ and $N_{b\text{-jets}} < 3$				
3ℓ	Three light leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges ± 1 Two same-charge leptons must be very tight and have $p_{\rm T} > 15$ GeV The opposite-charge lepton must be loose, isolated and pass the nonprompt BDT Zero medium $\tau_{\rm had}$ candidates $m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOC pairs $ m(3\ell) - 91.2$ GeV $ > 10$ GeV				
4 <i>t</i>	Four light leptons; sum of light-lepton charges 0 Third and fourth leading leptons must be tight $m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs $ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$ Split two categories: Z-depleted (0 SFOC pairs) and Z-enriched (two or four SFOC pairs)				
$1\ell + 2 au_{ m had}$	One tight light lepton with $p_{\rm T} > 27 \text{ GeV}$ Two medium $\tau_{\rm had}$ candidates of opposite charge, at least one being tight $N_{\rm jets} \ge 3$				
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_T > 15 \text{ GeV}$ Same-charge light leptons One medium τ_{had} candidate, with charge opposite to that of the light leptons $N_{\text{jets}} \ge 4$ m(ee) - 91.2 GeV > 10 GeV for <i>ee</i> events				
$2\ell OS + 1\tau_{had}$	Two loose and isolated light leptons with $p_{\rm T} > 25$, 15 GeV One medium $\tau_{\rm had}$ candidate Opposite-charge light leptons One medium $\tau_{\rm had}$ candidate $m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for the SFOC pair $N_{\rm jets} \ge 3$				
$3\ell + 1\tau_{\rm had}$	3ℓ selection, except: One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$ The opposite-charge light lepton must be loose and isolated				

ttH, $H \rightarrow bb$ Category

Search for ttH Process

STANDARD MODEL OF ELEMENTARY PARTICLES

HIGGS BOSON

Η

 126 GeV/c^2

0

0

G

A

U

G

E

B

Ο

N

- Establish one of the main Higgs production modes
- Direct measurement of Higgs coupling to top quark, the heaviest particle in SM