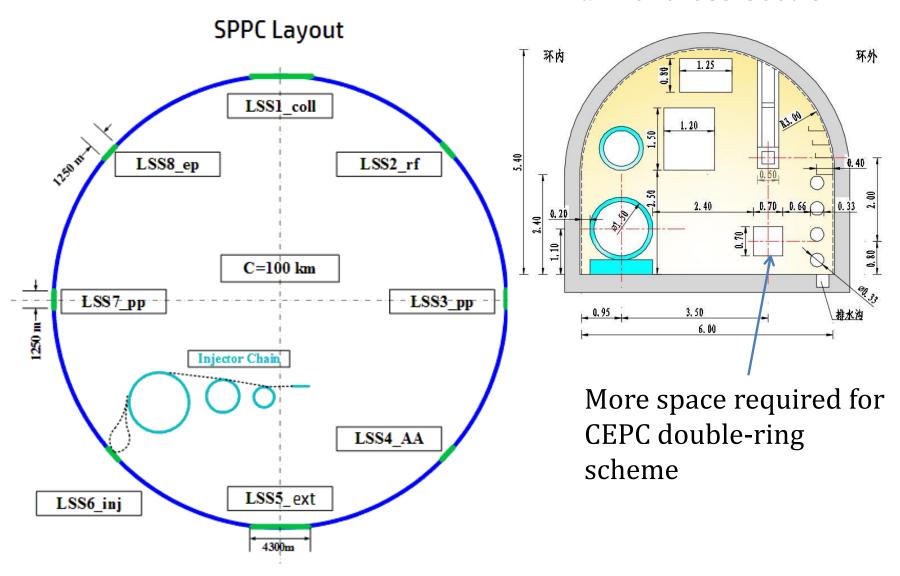
Overview of SPPC

Jingyu Tang for the SPPC study group

Informal mini-review on CEPC CDR, Nov. 4-5, 2017, IHEP

Main topics

- About the SPPC study
- Collider accelerator physics
- Technical issues
- Design concepts on the injector chain
- Plan for CDR writing
- Summary


From CEPC to SPPC

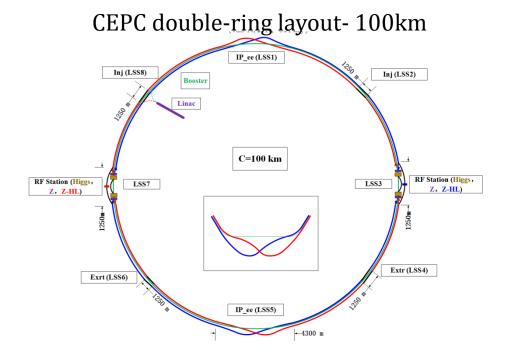
- SPPC is the second phase of the project, differing by 10-15 years
- Use the same CEPC tunnel to build SPPC, exploring new physics beyond SM and also precision Higgs
- Center-of-Mass energy larger than 70 TeV with possible energy upgrade
- Keep the e-/e+ rings when adding the SPPC
- Collisions possible: pp, e-/e+, ep, pA, eA, AA
- Build a new injector chain for SPPC (proton and ions)
- Independent physics programs for the accelerators of the injector chain

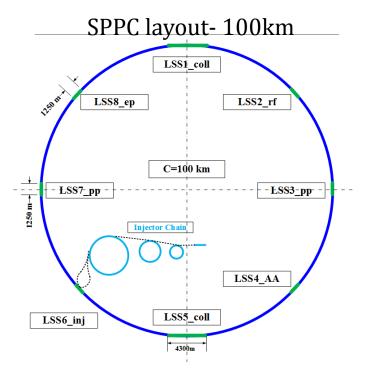
SPPC main parameters (updated)

Parameter	Unit		Value	
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	T	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	cm ⁻² s ⁻¹	1.2e35	1.0e35	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	A	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0e11	1.5e11	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	-

Tunnel cross-section

Study objectives


- SPPC study is focusing on
 - Describing what a future proton-proton collider looks like, physics performance
 - Following the CEPC project, try to avoid what will hinder the future upgrading to SPPC, e.g. tunnel circumference and layout
 - Studying key accelerator physics issues of that scale accelerators, which is also a contribution to the accelerator community, e.g. collimation, beam-beam effects
 - Identifying key technical challenges, for some of them needing long-term R&D efforts, we should start them as early as possible, e.g. high-field superconducting magnets, beam screen


Considerations on layout

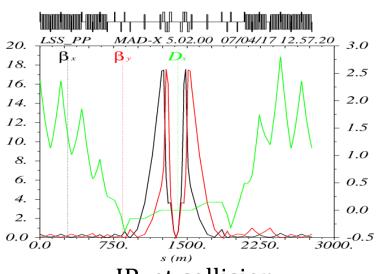
- Layout consideration
 - 8 arcs and long straight sections (accepted by CEPC)
 - Arcs will be traditional FODO based, 6-8 long SC dipoles per half cell, missing dipoles for dispersion suppression
 - Long straight sections (LSS) are important for pp colliders, here, two IPs, injection, extraction, collimation and RF stations
 - [Two very long LSSs for collimation and extraction Perhaps one IP more for A-A and one for e-p]
- Detouring detectors: quite challenging, CEPC rings and ee detectors to bypass the SPPC rings and pp detectors, how about AA and ep detectors

Compatibility between CEPC and SPPC

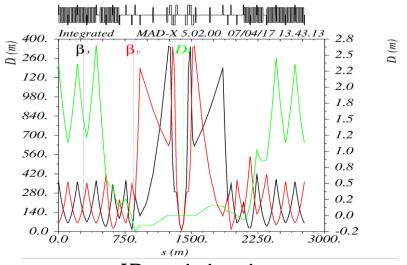
- CEPC first to be built, with potential to add SPPC later
- Three machines in one tunnel: e booster, ee double-ring collider, pp double-ring collider
- Allow ep collision in the future, to solve the problem in circumference difference (CEPC outside of SPPC)
- Layout: 8 long straights and arcs, LHC-like DS lattice, lengths for LSSs
- Several rounds of interactions between CEPC and SPPC design teams, tbc

Collider Accelerator Physics

-Parameter list updating


Parameter	Value	Unit				
Main parameters						
Circumference	100	km				
Beam energy	37.5	TeV				
Lorentz gamma	39979					
Dipole field	12.00	T				
Dipole curvature radius	10415.4	m				
Arc filling factor	0.780					
Total dipole magnet length	65442.0	m				
Arc length	83900	m				
Total straight section length	16100	m				
Energy gain factor in collider rings	17.86					
Injection energy	2.10	TeV				
Number of IPs	2					
Revolution frequency	3.00	kHz				
Revolution period	333.3	μs				
Physics performance and beam parameters						
Nominal luminosity per IP	1.01E+35	cm ⁻² s ⁻¹				
Beta function at initial collision	0.75	m				
Circulating beam current	0.73	A				
Nominal beam-beam tune shift limit per	0.0075					
Bunch separation	25	ns				
Bunch filling factor	0.756					
Number of bunches	10080					
Bunch population	1.5E+11					
Accumulated particles per beam	1.5E+15					
Normalized rms transverse emittance	2.4	μm				
Beam life time due to burn-off	14.2	hour				
Turnaround time	3.0	hour				
Total cycle time	17.2	hour				

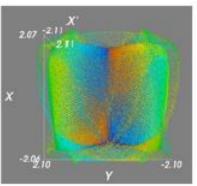
Total / inelastic cross section	147	mbarn
Reduction factor in luminosity	0.85	
Full crossing angle	110	μrad
rms bunch length	75.5	mm
rms IP spot size	6.8	μm
Beta at the 1st parasitic encounter	19.5	m
rms spot size at the 1st parasitic encoun	34.5	μm
Stored energy per beam	9.1	GJ
SR power per ring	1.1	MW
SR heat load at arc per aperture	12.8	W/m
Critical photon energy	1.8	keV
Energy loss per turn	1.48	MeV
Damping partition number	1	
Damping partition number	1	
Damping partition number	2	
Transverse emittance damping time	2.35	hour
Longitudinal emittance damping time	1.17	hour

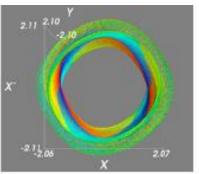

Lattice design

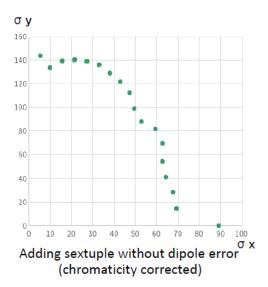
Yukai Chen, Feng Su, Linhao Zhang

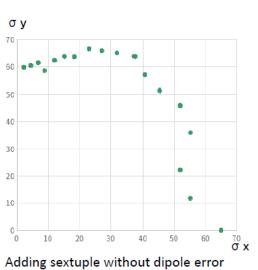
- Different lattice designs
 - Different schemes (100 TeV and 75 TeV @100 km)
 - Lattice at injection and collision
 - Compatibility between CEPC and SPPC
 - Arc cells, Dispersion suppressors, insertions
- For supporting other studies, e.g. magnets, collimation, dynamic aperture, ...

IP: at collision

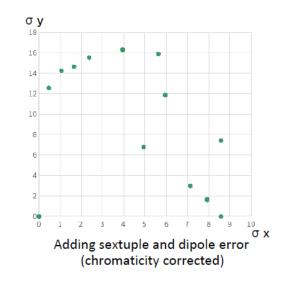


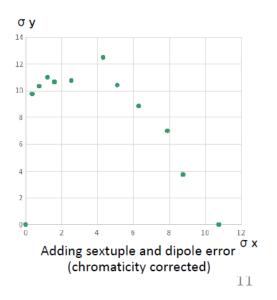

IP: at injection


Dynamic aperture study


- At collision energy
- At injection energy (Sixtrack code)

For the moment, it is ok, with iterations with magnet design

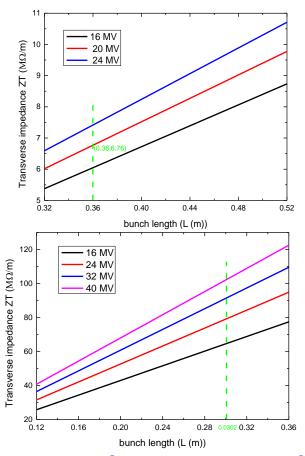




(chromaticity corrected)

Yukai Chen, Feng Su, collaborating with F. Schmidt

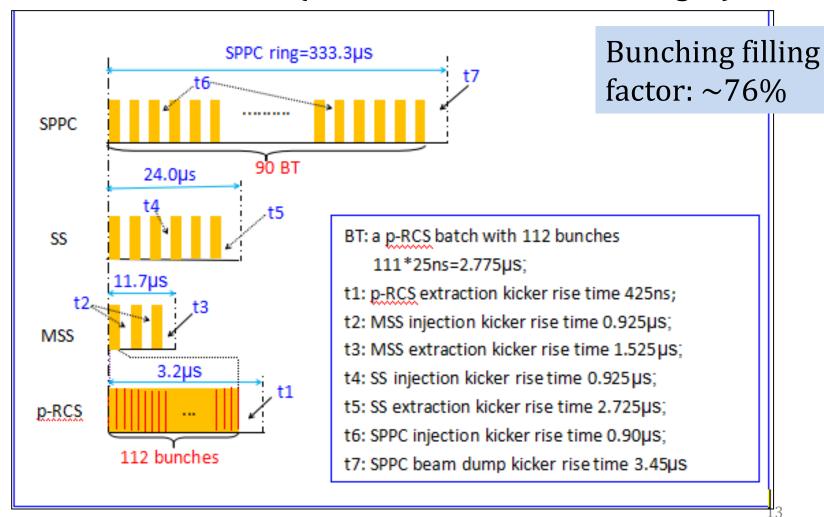
Longitudinal beam dynamics


Concerns:

- Bunch filling schemes
- Luminosity leveling schemes
- Instabilities
- Requirement to the RF systems
- Global study with the injector accelerators

Different factors:

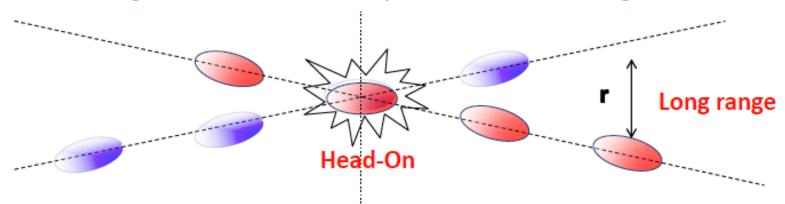
- IBS effect
- Emittance control (shrinking and blow-up)
- Bunch preparation in the injector chain


Linhao Zhang

Limitation by Transverse Mode Coupling Instability 12

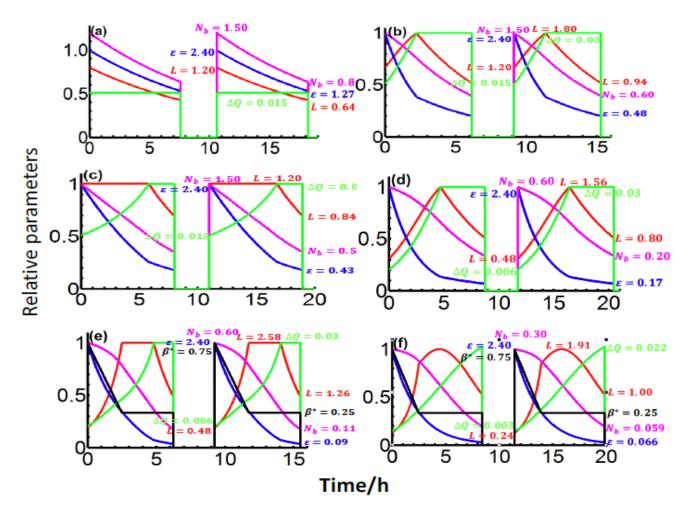
Bunch filling schemes

• 100 km - 75 TeV -25 ns (also for different SPPC designs)


Beam-beam effects

Lijiao Wang, collaborating with K. Ohmi and T. Sen

 $\mathcal{L} \propto oldsymbol{\xi} rac{1}{eta_u} N n_b f_r$


- Beam-beam effect has direct impact to the luminosity
- Studying different effects (ongoing)
 - Head-on interaction
 - Long-range interaction
 - Pacman effects
 - Orbit effects
 - Coherent beam effects
 - BB compensation methods (Electron lens, Compensation wires)

SPPC: normal bunch (164 LRBBI) Pacman bunch (82~164 LRBBI)

Luminosity Leveling

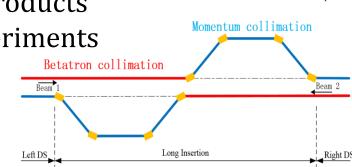
Increasing the average luminosity by programing the beam collision scenario (controlled emittance shrinking, turnaround time, beta*, B-B parameter, bunch spacing)

- Turnaround:0.8 hrs (min),2.4 hrs (ave)
- $\Delta Q: 0.03 \text{ (max)}$
- Spacing:25, 10, 5 ns
- Beta*:

 0.75 m
 0.75->0.25m

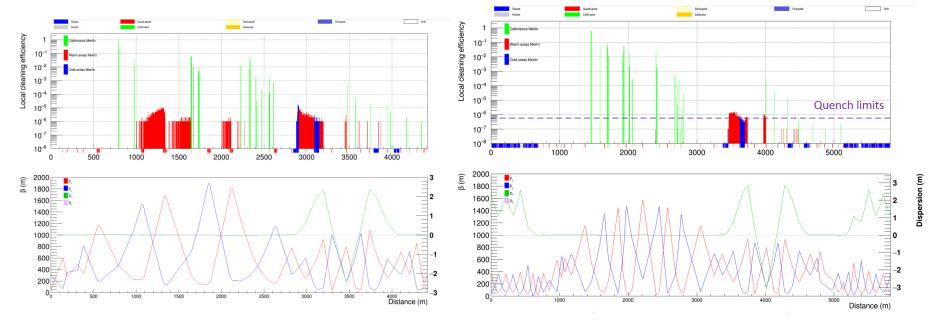
Collimation study

Ye Zou, Jianquan
Yang, collaborating
with LAL and LHC


Requirements

• SC magnet quench prevention:

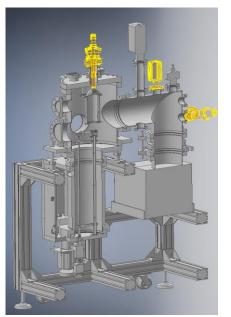
Huge stored energy: 9.1 GJ/beam

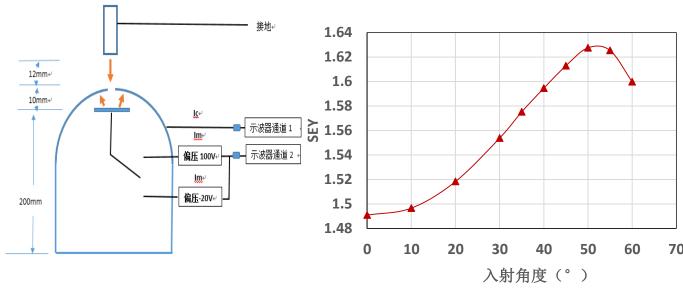

$$\tilde{\eta}_{c} = \frac{\tau_{\min} \cdot R_{q}}{N_{tot}^{q}} \quad \text{Rq: $\sim 10^{6}$ protons/m/s} \\ N_{tot}^{q} : 1.5 \times 10^{15} \\ \tau_{\min} : 0.2 \text{ h (10s) /5 h}$$

- Halo particles cleaning
- Machine protection: prevent damaging radiation-sensitive devices
- Radiation losses concentration: hands-on maintenance
- Cleaning physics debris: collision products
- Optimizing background: in the experiments
- halo diagnostics

Dipole

- Further developing the concept of combining betatron and momentum collimations in a same long straight section (4.3km)
- Recently a new design for the transverse collimation section, by introducing protected large-aperture superconducting magnets and add an additional collimation stage
 - Simulations show good effect in collimation efficiency
 - Protection-aid low-field SC quadrupoles workable

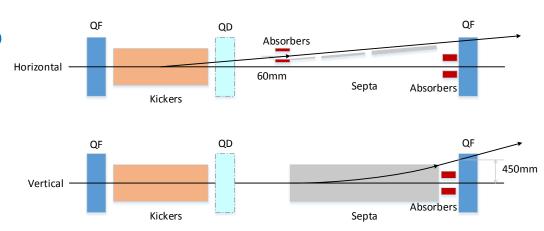

With RT magnets in beta-collimation

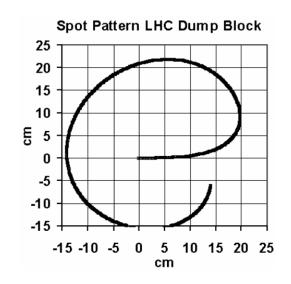

With SC magnets in beta-collimation

Impedance and instabilities

Yudong Liu

- General consideration about the instabilities and impedance budget
- Emphasizing the study on electron cloud effects
- Wall impedance from beam screen: coated YBCO
- Efforts to reduce SEY (<1.2); experimental study of secondary electrons (supported by NSFC fund)

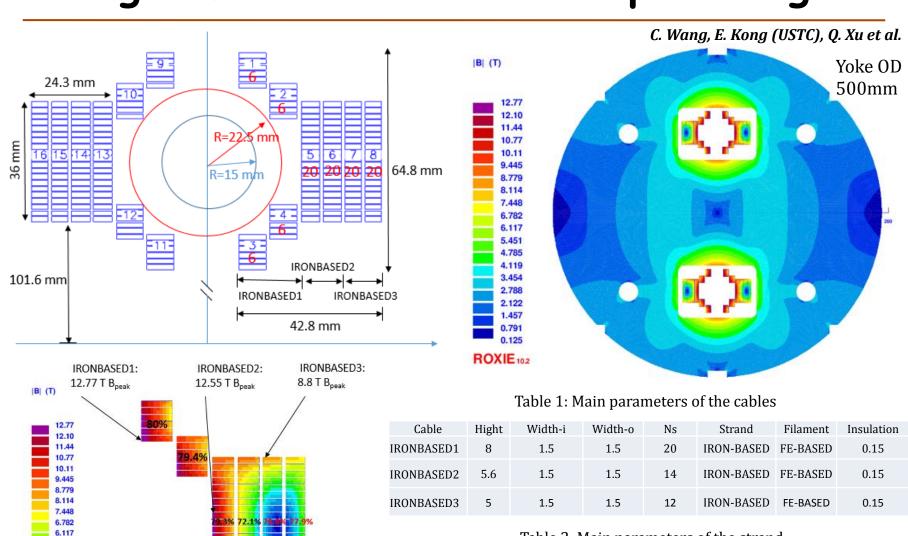



Injection and extraction

Ye Yang, Guangrui Li

Injection:

- Beam transfer from SS to SPPC (two beams)
- Multiple injections
- Injection scenario
- Extraction/abort:
 - MPS safety concerns
 - Optics
 - Energy dilution methods
- Identifying technical challenges
 - SC septum magnets
 - Kicker risetimes
 - Dump materials



Technical challenges and R&D requirements -High field SC magnets

- Following the new SPPC design scope
 - Phase I: 12 T, all-HTS (iron-based conductors)
 - Phase II: 20-24 T, all-HTS
- New magnet design for 12-T dipoles
- R&D effort in 2016-2018
 - Cables, infrastructure
 - Development of a 12-T Nb3Sn-based twin-aperture magnets (alone, with NbTi, with HTS)
- Collaboration
 - Domestic collaboration frame on HTS (material and applications) formed in October 2016
 - CERN-IHEP collaboration on HiLumi LHC magnets

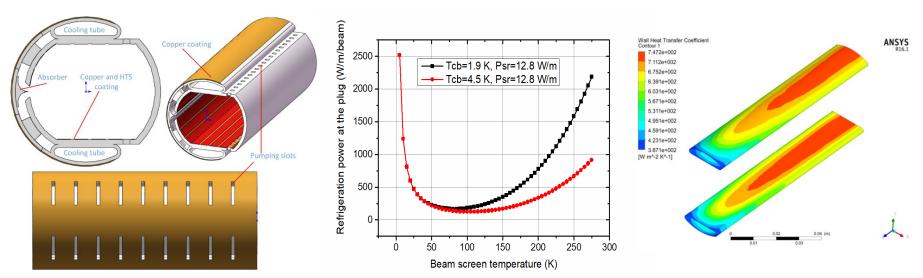
Design of 12-T Fe-based Dipole Magnet

5.451 4.785 4.119 3.454 2.788 2.122 1.457

0.791

ROXIE 10.2

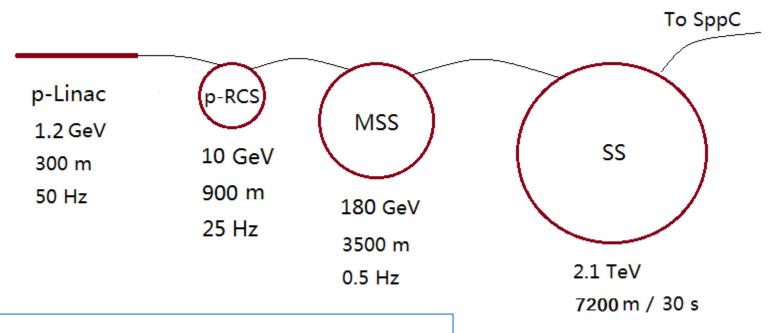
Table 2: Main parameters of the strand


Strand	diam.	cu/sc	RRR	Tref	Bref	Jc@ BrTr	dJc/dB
IRON-BASED	0.802	1	200	4. 2	10	4000	111

For per meter of such magnet, the required length of the iron-based strand: 6.08 Km

Beam screen study

Kun Zhu, Pingping Gan


- With the new design scope, SR power decreases from 45 W/m to 12.8 W/m, but still very important, and beam screen still a critical issue
- Different effects combined: impedance, electron cloud, vacuum, magnet quenches, cooling etc.
- Recent work focused on: structure, HTS coating, working temperature, impedance, cooling method

Other important technical challenges

- Collimation system: new materials to reduce impedance and tolerate more heat deposit
- Very large scale cryogenics system: SC magnets, SRF, beam screens
- Sophisticated beam feedback system: to control the emittance heat-up and suppress beam instabilities
- Machine protection system: fast detection of abnormal function, reliable beam abort (kickers and septa)
- There are also many technical challenges in building high-power injector chain: e.g. RF systems for p-RCS and MSS, fast ramping for SS

Injector chain (for proton beam)

p-Linac: proton superconducting linac

p-RCS: proton rapid cycling synchrotron

MSS: Medium-Stage Synchrotron

SS: Super Synchrotron

Ion beams have dedicated linac (I-Linac) and RCS (I-RCS)

24

Preliminary design of the injector chain

- Accelerator schemes and parameter lists
- Preparation of the beam for injection into SPPC: energy, intensity, emittance, bunch pattern, turnaround time
- Maximize the performance with modest cost for each accelerator (different settings from service to SPPC)
- Pre-conceptual design on each stage:
 - p-Linac/i-Linac: Yuanrong Lu, Haifeng Li (RFQ, DTL, SC cavities)
 - p-RCS/i-RCS: Linhao Zhang, Jingyu Tang (parameter design)
 - MSS: Yang Hong (parameter design, lattice)
 - SS: Xiangqi Wang, Tao Liu (parameters, lattice, injection/extraction, acceleration)

Major parameters for the injector chain

	Value	Unit		Value	Unit
p-Linac			MSS		
Energy	1.2	GeV	Energy	180	GeV
Average current	1.4	mA	Average current	20	uA
Length	~300	m	Circumference	3500	m
RF frequency	325/650	MHz	RF frequency	40	MHz
Repetition rate	50	Hz	Repetition rate	0.5	Hz
Beam power	1.6	MW	Beam power	3.7	MW
p-RCS			SS		
Energy	10	GeV	Energy	2.1	TeV
Average current	0.34	mA	Accum. protons	1.0E14	
Circumference	970	m	Circumference	7200	m
RF frequency	36-40	MHz	RF frequency	200	MHz
Repetition rate	25	Hz	Repetition period	30	S
Beam power	3.4	MW	Protons per bunch	1.5E11	
			Dipole field	8.3	T

More about the Injector Chain

- Injector chain by itself is a very complicated and powerful accelerator system, large enough by a single stage
 - Totally new, different from LHC or Tevatron (building-up by steps)
 - No close reference accelerators (scaled up by large factors)
 - Should be built earlier than SPPC by a few years to allow relatively long-time commissioning stage by stage
- Rich physics programs for each stage, e.g.:
 - p-Linac: producing intense neutrons and muons and rare isotopes for wide research areas
 - p-RCS and MSS: producing very powerful neutrino beams for neutrino oscillation experiments
- Key technical challenges should be identified, so needed R&D program can be pursued (e.g. high-Q ferrite-loaded RF cavities)

Plan on the SPPC chapter in the CDR

- Subsection material preparation assignment: November 2017
- Material collection will be finished by December 2017 (Jingyu Tang)
- First version to the editor: mid-January 2018
- Second version to the editor : end-January 2018
- Final version to the editor: mid-February
- If needed, we can accelerate the process

Contents in CDR

Ch.7 Upgrade to SPPC

- 7.1 Introduction (Tang Jingyu and theorists, some changes from Pre-CDR)
 - 7.1.1 Science reach at the SPPC
 - 7.1.2 The SPPC complex
 - 7.1.3 Design goals
 - 7.1.4 Overview of the SPPC design
- 7.2 Key accelerator physics issues
 - 7.2.1 Main parameters (Update, Tang Jingyu)
 - 7.2.2 Synchrotron radiation (no change)
 - 7.2.3 Beam-beam effects (Wang Lijiao, K. Ohmi and Tanaji Sen)
 - 7.2.4 Electron cloud effects (Liu Yudong)
 - 7.2.5 Beam loss and collimation (Zou Ye)
 - 7.2.6 Injection and extraction (Yang Ye/ Li Guangrui)
- 7.3 Preliminary accelerator physics design
 - 7.3.1 Lattice design (Su Feng/ Chen Yukai)
 - 7.3.2 Collimation design (Zou Ye)
 - 7.3.2 Longitudinal dynamics (Zhang Linhao)

- 7.4 Key technical systems
 - 7.4.1 High-field superconducting magnets (Xu Qingjin)
 - 7.4.2 Cryogenic vacuum and beam screen (Zhu Kun/ Wang Yong)
 - 7.4.3 Other technical challenges (Tang Jingyu)
- 7.5 Injector chain
 - 7.5.1 General considerations (Tang Jingyu)
 - 7.5.2 Proton and ion linacs (Lu Yuanrong)
 - 7.5.3 Rapid Cycling Synchrotrons (Tang Jingyu)
 - 7.5.4 Medium-Stage Synchrotron (Hong Yang/Tang Jingyu)
 - 7.5.5 Super Synchrotron (Wang Xiangqi)
- 7.6 Reconfiguration of the accelerator complex from CEPC to SPPC (Zhang Yuhong, almost no change)

Summary

- SPPC the second phase of CEPC-SPPC, a pre-conceptual design for a 75-TeV pp collider is ongoing, to explore new physics in energy frontier
- SPPC will provide wide physics programs, including the collider and the beams from the injector accelerators
- Study focusing on a few key accelerator physics issues: lattice, collimation, b-b effects, longitudinal dynamics, instabilities, injection/extraction
- Identifying technical challenges to be solved in the next two decades, besides high-field SC magnets and beam screen
- Pre-conceptual study on the injector chain is also under way

THANK YOU!