A new method to calculate

Feynman integrals

Xiao Liu

Peking University
Based on:
X. Liu, Y.Q. Ma, C. Y. Wang, Phys.Lett. B779 (2018) 353
X. Liu, Y.Q. Ma, arXiv:1801.10523

School and Workshop on PQCD
Hangzhou, Mar. $28^{\text {th }}, 2018$

Outline

I. Introduction

II. Series representation
III. Reduction
III. Analytical continuation for MI
IV. Summary

High precision calculation

> High precision calculation

- Test for SM
- Search for signals of new physics

$>$ Feynman loop integrals need to be considered

Methods for calculating Feynman integrals

$>$ Direct Calculation:

- Sector decomposition Binoth, Heinrich, 0004013
- Mellin-Barnes representation Usyukina (1975)

Smirnov, 9905323

> Indirect Calculation: 1) reducing to master integrals; 2) calculating MIs

1) integration-by-parts (IBP) reduction, unitarity-based reduction, ...
2) difference equation, differential equation (DE), ...
```
Chetyrkin, Tkachov, NPB (1981)
Laporta,0102033
Kotikov, PLB (1991)
```


Where is the prospect?

> Examples

- For two-loop $p+p \rightarrow H+H$: complete reduction cannot be achieved within tolerable time
- For four-loop nonplanar cusp anomalous dimension, achieved numerical result with 10\% uncertainty within tolerable computational expense

New ideas are badly needed to give a better solution!!!

Outline

I. Introduction

II. Series representation
III. Reduction
III. Analytical continuation for MI
IV. Summary

Feynman integrals with an auxiliary variable

$>$ Dimensionally regularized Feynman integral

$$
\mathcal{M}(D, \vec{s}, \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \prod_{\alpha=1}^{N} \frac{1}{\left(q_{\alpha}^{2}-m_{\alpha}^{2}+\mathrm{i} \eta\right)^{\nu_{\alpha}}}
$$

- Think of it as an analytical function of η
- Physical result is defined by

$$
\mathcal{M}(D, \vec{s}, 0) \equiv \lim _{\eta \rightarrow 0^{+}} \mathcal{M}(D, \vec{s}, \eta)
$$

Nature near $\eta=\infty$

$>$ Rescaling $\ell \rightarrow \eta^{1 / 2} \tilde{\ell}$

$$
\frac{1}{(\ell+p)^{2}-m^{2}+\mathrm{i} \eta}=\eta^{-1} \times \frac{1}{\left(\tilde{\ell}+\eta^{-1 / 2} p\right)^{2}-\eta^{-1} m^{2}+\mathrm{i}}
$$

- Small quantities: $\frac{\tilde{\ell} \cdot p}{\sqrt{\eta}}, \frac{p^{2}}{\eta}, \frac{m^{2}}{\eta}$

> Taylor Expansion

$$
\frac{1}{\left(\tilde{\ell}+\eta^{-1 / 2} p\right)^{2}-\eta^{-1} m^{2}+\mathrm{i}}=\frac{1}{\tilde{\ell}^{2}+\mathrm{i}} \sum_{j=0}^{\infty}\left\{-\frac{2 \eta^{-1 / 2} \tilde{\ell} \cdot p+\eta^{-1}\left(p^{2}-m^{2}\right)}{\tilde{\ell}^{2}+\mathrm{i}}\right\}^{j}
$$

Vacuum propagators with equal squared masses.

Series representation

> Asymptotic series near $\eta=\infty$

$$
\mathcal{M}(D, \vec{s}, \eta)=\eta^{L D / 2-\nu} \sum_{k=0}^{\infty} \eta^{-k} \mathcal{M}_{k}^{\mathrm{vac}}(D, \vec{s})
$$

- The coefficients contain only vacuum integrals, easier to calculate
> Obtain Feynman integrals by analytical continuation (next two sections)

Example: sunrise diagram

Vacuum Is:

$\mathcal{M}_{1}^{\mathrm{vac}}=-\frac{(D-2)^{2} p^{2}}{3 D} \times$

$$
+\frac{\mathrm{i}(D-3)\left(3 D m^{2}-D p^{2}-4 p^{2}\right)}{9 D} \times
$$

$\mathcal{M}_{2}^{\mathrm{vac}}=\cdots$

Vacuum master integrals

$>$ Vacuum MIs up to 3-loop, analytical results are

 knownDavydychev,Tausk, NPB(1993)
Broadhurst, 9803091

Kniehl, PikeIner, Veretin, 1705.05136

Numerical results are known up to 5-loop order!!!
Schroder, Vuorinen, 0503209
Luthe, PhD thesis (2015)
Luthe, Maier, Marquard, Ychroder, 1701.07068

Outline

I. Introduction

II. Series representation

III. Reduction
III. Analytical continuation for MI
IV. Summary

Reduction relation

> Example: a simple differential equation

$$
\begin{aligned}
\mathcal{M}\left(D, m^{2}, \eta\right) & =\int \frac{\mathrm{d}^{D} \ell}{\mathrm{i} \pi^{D / 2}} \frac{1}{\ell^{2}-m^{2}+\mathrm{i} \eta} \\
\frac{\partial}{\partial \eta} \mathcal{M}\left(D, m^{2}, \eta\right) & =\frac{(D-2)}{2\left(\eta+\mathrm{i} m^{2}\right)} \mathcal{M}\left(D, m^{2}, \eta\right)
\end{aligned}
$$

- Series Rep: $\mathcal{M}\left(D, m^{2}, \eta\right)=\eta^{D / 2-1} \sum_{k=0}^{\infty} \eta^{-k} \mathcal{M}_{k}^{\text {vac }}$
$>$ Recurrence relation for $M_{k}^{v a c}$

$$
\mathcal{M}_{k+1}^{\mathrm{vac}}=\frac{\mathrm{i} m^{2}(D-2 k-2)}{2(k+1)} \mathcal{M}_{k}^{\mathrm{vac}}, \quad k=0,1,2, \ldots
$$

- Construct $M_{k}^{v a c}$ from $M_{0}^{v a c}$

Reduction relation

$>M_{k}^{v a c}$ from series representation

$$
\mathcal{M}_{k}^{\mathrm{vac}}=\int \frac{\mathrm{d}^{D} \tilde{\ell}}{\mathrm{i} \pi^{D / 2}} \frac{\left(m^{2}\right)^{k}}{\left(\tilde{\ell}^{2}+\mathrm{i}\right)^{k+1}}=\left(-\mathrm{i} m^{2}\right)^{k} \frac{(1-D / 2)_{k}}{k!} \times
$$

> The results should be self-consistent

$$
\begin{array}{rll}
\mathcal{M}_{0}^{\text {vac }} & \stackrel{\mathrm{DE}}{\Longrightarrow} & \mathcal{M}_{k}^{\text {vac }} \\
\mathcal{M}\left(D, m^{2}, \eta\right) & \stackrel{\mathrm{SR}}{\Longrightarrow} & \mathcal{M}_{k}^{\text {vac }}
\end{array}
$$

The information of DE is hidden in SR!

Obtain reduction relation from SR

> Unknown DE

$$
\frac{\partial}{\partial \eta} \mathcal{M}\left(D, m^{2}, \eta\right)=\frac{Q_{1}^{00}}{Q_{2}^{10} \eta+Q_{2}^{01} m^{2}} \mathcal{M}\left(D, m^{2}, \eta\right)
$$

- $Q_{1}^{00}, Q_{2}^{10}, Q_{2}^{01}$ are unknown functions of D

$>$ Linear equations for Qs

$$
\begin{aligned}
& {\left[Q_{2}^{10}(D-2)-2 Q_{1}^{00}\right] \mathcal{M}_{0}^{\mathrm{rac}}=0} \\
& {\left[Q_{2}^{10}(D-4-2 k)-2 Q_{1}^{00}\right] \mathcal{M}_{k+1}^{\mathrm{yac}}+Q_{2}^{01} m^{2}(D-2 k-2) \mathcal{M}_{k}^{\mathrm{vac}}=0, \quad k=0,1,2, \ldots} \\
& \left.\mathcal{M}_{k}^{\mathrm{rac}}=\left(-\mathrm{i} \mathrm{i}^{2}\right)^{2}\right)^{(1-D / 2)} \frac{1}{k!} \times \\
& \text { - Solution: } Q_{2}^{10}=\frac{2 Q_{1}^{00}}{D-2}, Q_{2}^{01}=\frac{2 i Q_{1}^{00}}{D-2}
\end{aligned}
$$

General Discussions

> The Number of Master Integrals is Finite

- Feynman integrals form a finite dimensional linear space
$>$ For n -dim space, $\left\{M_{1}, M_{2}, \ldots, M_{n+1}\right\}$ must be linear dependent

$$
\sum^{n+1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- Q_{i} : unknown polynomials of \vec{s}, η

General Discussions

$>$ Decompose Q_{i}

$$
Q_{i}(D, \vec{s}, \eta)=\sum_{\left(\lambda_{0}, \vec{\lambda}\right) \in \Omega_{d_{i}}^{r+1}} Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D) \eta^{\lambda_{0}} s_{1}^{\lambda_{1}} \cdots s_{r}^{\lambda_{r}}
$$

$>$ Obtain enough linear equations through SR to solve $Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D)$
$>$ Analytical relation valid on the whole η plane

$$
\sum_{i=1}^{n+1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

Example

$>$ Reduction of $I_{v 11}$

- $\quad v$ is the power of massive propagator

ν	Our reduction		FIRE5	
	Time/s	\# of relations	Time/s	\# of relations
5	0.14	14	12	203
10	0.33	34	42	1313
15	0.48	54	346	4073
20	0.75	74	2169	9233
100	5.43	394	-	-

- The new method needs much less relations than IBP method (FIRE5), and thus much faster

Outline

I. Introduction

II. Series representation
III. Reduction
III. Analytical continuation for MI

IV. Summary

Analytical continuation for MIs

$>$ ODE for MIs

$$
\frac{\partial}{\partial \eta} \vec{I}(D, \vec{s}, \eta)=A(D, \vec{s}, \eta) \vec{I}(D, \vec{s}, \eta)
$$

$>$ Boundary conditions at $\eta=\infty$: leading term of the series representation, known

Numerically solving ODE - a well-studied problem

Solving ODE

2-Loop Test

> Test for 2-loop non-planar integral

$$
\text { with } m^{2}=1, s=4, t=-1
$$

> ODE with 168 master integrals

$$
\begin{gathered}
I_{\mathrm{np}}(4-2 \epsilon)=0.0520833 \epsilon^{-4}-(0.131616-0.147262 \mathrm{i}) \epsilon^{-3} \\
\quad-(0.741857+0.185602 \mathrm{i}) \epsilon^{-2}+(3.73984-4.15756 \mathrm{i}) \epsilon^{-1} \\
-(4.75677-12.0749 \mathrm{i})+(23.9674-55.4214 \mathrm{i}) \epsilon+\cdots,
\end{gathered}
$$

> It takes a few minutes
$>$ To compare with, FIESTA: $O\left(10^{4}\right)$ CPU core-hour

Summary

$>$ The series representation of Feynman integrals: a calculable series, which can be analytical continued to the origin

1) Construct the series representation
2) Set up reduction relations
3) Analytical continuation by solving DEs
Thank you!

Analytic structure at infinity

> Feynman parametric rep.

$$
I(\eta)=(-1)^{\nu} \frac{\Gamma(\nu-L D / 2)}{\prod_{i} \Gamma\left(\nu_{i}\right)} \int \prod_{\alpha}\left(x_{\alpha}^{\nu_{\alpha}-1} \mathrm{~d} x_{\alpha}\right) \delta\left(1-\sum_{j} x_{j}\right) \frac{\mathcal{U}^{-D / 2}}{(\mathcal{F} / \mathcal{U}-\mathrm{i} \eta)^{\nu-L D / 2}}
$$

- U: graph polynomial of 1-tree
- \mathcal{F} : graph polynomial of 2-tree
$>$ Observation: $|\mathcal{F} / \mathcal{U}|$ is bounded in the Feynman parameter space!

$$
\left|\mathcal{F}_{i}\right|<\left|t_{i}\right|\left|\mathcal{U}_{i}\right|<\left|t_{i}\right||\mathcal{U}| \text { and }|\mathcal{F}|<\sum_{i}\left|t_{i}\right||\mathcal{U}|
$$

$>$ Thus: $J(D ; \eta) \equiv \eta^{\nu-L D / 2} I(D ; \eta)$ is analytic at $\eta=\infty$

Vacuum Reduction at 2-loop level

$$
\begin{aligned}
I_{n_{1}, n_{2}, n_{3}}^{\mathrm{bub}}= & \frac{2 n_{3}}{3\left(n_{1}-1\right) \mathrm{i}} I_{n_{1}-2, n_{2}, n_{3}+1}^{\mathrm{bub}}-\frac{2 n_{3}}{3\left(n_{1}-1\right) \mathrm{i}} I_{n_{1}-1, n_{2}-1, n_{3}+1}^{\mathrm{bub}}+\frac{1}{3 \mathrm{i}} I_{n_{1}, n_{2}-1, n_{3}}^{\mathrm{bub}} \\
& -\frac{1}{3 \mathrm{i}} I_{n_{1}, n_{2}, n_{3}-1}^{\mathrm{bub}}+\frac{3 n_{1}-3-D}{3\left(n_{1}-1\right) \mathrm{i}} I_{n_{1}-1, n_{2}, n_{3}}^{\mathrm{bub}}
\end{aligned}
$$

General Structure of DEs

$>$ DEs

$$
\frac{\partial}{\partial \eta} \vec{I}(D ; \eta)=A(D ; \eta) \vec{I}(D ; \eta)
$$

$>$ Pole Structure

Step1: Expansion at the infinity

> Transformation

$$
J(D ; \eta)=\eta^{\nu-L D / 2} I(D ; \eta)
$$

$>\eta \rightarrow x^{-1}$

$$
x \frac{\partial}{\partial x} \vec{J}(x)=B_{1}(x) \vec{J}(x)
$$

$>$ "Outside of the large circle"

$$
\vec{J}(x)=\sum_{n=0}^{\infty} \vec{J}_{n} x^{n}, \quad B_{1}(x)=\sum_{n=0}^{\infty} B_{1 n} x^{n}
$$

Step1: Expansion at the infinity

$>$ Recurrence relations

$$
\left(n-B_{10}\right) \vec{J}_{n}=\sum_{k=0}^{n-1} B_{1 n-k} \vec{J}_{k}
$$

$>$ Can be used to determine any order of \vec{J}_{n}
$>$ Estimation of $\vec{J}(x)$

$$
\vec{J}(x) \sim \sum_{n=0}^{n_{0}} \vec{J}_{n} x^{n}
$$

e.g. at $x=\frac{1}{2} r, \vec{J}\left(\frac{r}{2}\right) \Rightarrow \vec{I}\left(\frac{2}{r}\right)$

Step2: Expansion at analytical points

$>\boldsymbol{A t} \eta=\eta_{k}$:

- Expand the differential equation and obtain the recurrence relations
- Solve for high-order expansion coefficients
- Estimate the value of $\vec{I}(\eta)$ at $\eta=\eta_{k+1}$
$>$ End if we have entered the small circle

Step3: Expansion at $\eta=0$

$>\vec{I}\left(\eta_{0}\right)$ is known. How to determine $\vec{I}(0)$?
$>$ DE

$$
\eta \frac{\partial}{\partial \eta} \vec{I}=\tilde{A} \vec{I}
$$

$>$ Asymptotic behavior

$$
\vec{I}(\eta) \sim \eta^{\tilde{A}(0)} \vec{v}_{0} \quad \text { with } \vec{v}_{0} \text { being constant }
$$

$>$ In general

$$
\vec{I}(\eta) \equiv P(\eta) \eta^{\tilde{A}(0)} \vec{v}_{0}
$$

Step3: Expansion at $\eta=0$

$>$ Expand and obtain recurrence relations

$$
n P_{n}+\left[P_{n}, \tilde{A}_{0}\right]=\sum_{k=0}^{n-1} \tilde{A}_{n-k} P_{k}
$$

$>$ Can be used to determine any order of P_{n}
$>\vec{v}_{0}$ contains all information of boundary
$>$ Determine \vec{v}_{0} via matching

$$
\vec{I}\left(\eta_{0}\right)=P\left(\eta_{0}\right) \eta_{0}^{\tilde{A}(0)} \vec{v}_{0}
$$

then

$$
\vec{I}(0)=\lim _{\eta \rightarrow 0} \eta^{A(0)} \vec{v}_{0}
$$

